In this paper, we obtain new sufficient conditions for the operators \(F_{\alpha_1,\alpha_2,...,\alpha_n,\beta}(z)\) and \(G_{\alpha_1,\alpha_2,...,\alpha_n,\beta}(z)\) to be univalent in the open unit disc \(\mathcal{U}\), where the functions \(f_1, f_2,..., f_n\) belong to the classes \(S^*(a, b)\) and \(\mathcal{K}(a, b)\). The order of convexity for the operators \(F_{\alpha_1,\alpha_2,...,\alpha_n,\beta}(z)\) and \(G_{\alpha_1,\alpha_2,...,\alpha_n,\beta}(z)\) is also determined. Furthermore, and for \(\beta= 1\), we obtain sufficient conditions for the operators \(F_n(z)\) and \(G_n(z)\) to be in the class \(\mathcal{K}(a, b)\). Several corollaries and consequences of the main results are also considered.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, the focus is on the results which involve exponential functions. The results of Pathan and Yasmeen [6] and Exton [3] are used with a view to obtaining generating functions which are partly unilateral and partly bilateral.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
K. I. Noor (2007 Appl. Math. Comput. 188, 814–823) has defined the classes Qk(a, b, λ, γ) and Tk(a, b, λ, γ) of analytic functions by means of linear operator connected with incomplete beta function. In this paper, we have extended some of the results and have given other properties concerning these classes.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.