Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  information gain
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
This paper demonstrates the possible conclusions which can be drawn from an analysis of entropy and information. Because of its universality, entropy can be widely used in different subjects, especially in biomedicine. Based on simulated data the similarities and differences between the grouping of attributes and testing of their independencies are shown. It follows that a complete exploration of data sets requires both of these elements. A new concept introduced in this paper is that of normed information gain, allowing the use of any logarithm in the definition of entropy.
3
63%
EN
A method for air combat sensor resource management based on fuzzy Bayesian networks (FBN) is presented. Using the fuzzy value of target information gain, target threat level and pilot command, probabilistic reasoning among the networks is carried out. Simulation results indicate that FBN method performances better in the allocation of sensor resource compared to information gain (IG) method.
PL
W artykule przedstawiono zastosowanie sieci Bayes’a (ang. FBN) w zarządzaniu zasobem czujników w czasie walki powietrznej. Wykorzystując wartość rozmytą informacji o celu, poziom możliwego zagrożenia oraz komendy pilota, zbudowano sieć argumentowania probabilistycznego. Wyniki symulacyjne wykazują, że metoda FBN wykazuje lepsze właściwości alokacji zasobów niż metoda dywergencji Kullbacka-Leiblera (DKL, IG).
PL
W pracy pokazano, że najważniejsze informacje o macierzy rozróżnialności można odtworzyć nie konstruując tej macierzy, a jedynie bazując na częstościach atrybutów. Takie podejście daje znaczny zysk obliczeniowy, rozkład pojedyńczego atrybutu można znaleźć w czasie proporcjonalnym do n.
EN
The minimal reiduct problem is NP-hard, therefore it can be solved exactly only for relatively small datasets. The paper presents comparison of different heuristic approaches to attribute, selection for building rough set reducts, based on cither discernibility matrix or information theoretical measures like entropy and Cini index. It has been shown theoretically and experimentally that entropy and Gini index work better if the reduct is later used for prediction of previously unseen cases, and the criterion based on the discernibility matrix tends to work better for learning functional relationships where generalisation is not an issue.
EN
An automatic analysis of product reviews requires deep understanding of the natural language text by machine. The limitation of bag-of-words (BoW) model is that a large amount of word relation information from the original sentence is lost and the word order is ignored. Higher-order-N-grams also fail to capture the long-range dependency relations and word order information. To address these issues, syntactic features extracted from the dependency relations can be used for machine learning based document-level sentiment classification. Generalization of syntactic dependency features and negation handling is used to achieve more accurate classification. Further to reduce the huge dimensionality of the feature space, feature selection methods based on information gain (IG) and weighted frequency and odds (WFO) are used. A supervised feature weighting scheme called delta term frequency-inverse document frequency (TF-IDF) is also employed to boost the importance of discriminative features using the observed uneven distribution of features between the two classes. Experimental results show the effectiveness of generalized syntactic dependency features over standard features for sentiment classification using Boolean multinomial naive Bayes (BMNB) classifier.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.