A continuum individual-based model of hopping and coalescing particles is introduced and studied. Its microscopic dynamics are described by a hierarchy of evolution equations obtained in the paper. Then the passage from the micro- to mesoscopic dynamics is performed by means of a Vlasov-type scaling. The existence and uniqueness of solutions of the corresponding kinetic equation are proved.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of this paper is to discuss a special case of a coalescing random jumps model of infinitely many jumping individuals. Jumps are embedded with repulsion at the target point and coalescence kernel is defined in such a way that for two coalescing individuals the result is deterministically defined. A possible approach to study the dynamics of the system numerically is discussed. It is based on a Poisson approximation of states of the system. Some interesting results of simulations are showed.
PL
Celem niniejszego artykułu jest omówienie szczególnego przypadku modelu skoków z odpychaniem oraz ze sklejaniem opisującego dynamikę nieskończonej liczby agentów. Skoki są wyposażone w mechanizm odpychania oparty o punkt docelowy skoku. Jądro koalescencji jest zdefiniowane w taki sposób, że wynik sklejania dwóch agentów jest określony w sposób deterministyczny. Podany został przykład podejścia do badania numerycznego dynamiki tego modelu opierający się o przybliżanie stanów układu miarami Poissona. Pokazano kilka ciekawych rezultatów takich symulacji.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.