In the paper a new, state space, non integer order model for one dimensional heat transfer process is presented. The model is based on known semigroup model. The derivative with respect to time is described by the non integer order Caputo operator, the spatial derivative is described by integer order operator. The elementary properties of the state operator are proven. The solution of state equation is calculated with the use of Laplace transform. Results of experiments show, that the proposed model is more accurate than analogical integer order model in the sense of square cost function.
A new, state space, non-integer order model for the heat transfer process is presented. The proposed model is based on a Feller semigroup one, the derivative with respect to time is expressed by the non-integer order Caputo operator, and the derivative with respect to length is described by the non-integer order Riesz operator. Elementary properties of the state operator are proven and a formula for the step response of the system is also given. The proposed model is applied to the modeling of temperature distribution in a one dimensional plant. Results of experiments show that the proposed model is more accurate than the analogical integer order model in the sense of the MSE cost function.
This paper presents an algorithm for designing dynamic compensator for infinitedimensional systems with bounded input and bounded output operators using finite dimensional approximation. The proposed method was then implemented in order to find the control function for thin rod heating process. The optimal sampling time was found depending on discrete output measurements.
The paper presents a survey of recent results in the area of controllability of second order dynamical systems. Controllability problem for finite and infinite dimensional, linear, semilinear, deterministic and stochastic dynamical systems (with delays and undelayed) is taken into consideration. Different types of controllability are discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.