Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  inercyjna jednostka pomiarowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: The aim of the study was to answer two questions: 1 – Can data processing algorithms ensure sufficient accuracy for estimating human body pose via wearable systems? 2 – How to process the IMU sensor data to obtain the most accurate information on the human body pose? To answer these questions, the authors evaluated proposed algorithms in terms of accuracy and reliability. Methodology: data acquisition was performed with tested IMU sensors system mounted onto a Biodex System device. Research included pendulum movement with seven angular velocities (10-120°/s) in five angular movement ranges (30-120°). Algorithms used data from accelerometers and gyroscopes and considered complementary and/or Kalman filters with adjusted parameters. Moreover, angular velocity registration quality was also taken into consideration. Results: differences between means for angular velocity were 0.55÷1.05°/s and 1.76÷3.11%. In the case of angular position relative error of means was 4.77÷10.84%, relative error of extreme values was 2.15÷4.81% and Spearman’s correlation coefficient was 0.74÷0.89. Conclusions: Algorithm calculating angles based on acceleration-derived quaternions and with implementation of Kalman filter was the most accurate for data processing and can be adapted for future work with IMU sensors systems, especially in wearable devices that are designated to support human in daily activity.
EN
The problem of estimation of the manipulator’s arm angle using the inertial measurement unit (IMU) is discussed. This unit was attached to the arm allowing identification of the arm’s angle relatively to the global coordinate system. The manipulator was also equipped with two incremental encoders. Results of conducted experiments allowed to compare the pitch angle of the robot arm, estimated from the IMU and calculated from the encoder unit. In the study the influence of the IMU sensor position on the quality of estimates was verified. Parameters of the estimation algorithm have been also checked. Finally, the selected estimation algorithm was verified during the operation, where manipulator moved at various speeds and angles. Aim of this study was to test the angle estimation method using an IMU in the mechanical system with hydraulic drives.
PL
W artykule poruszono problem estymacji kąta wychylenia ramienia manipulatora przy użyciu inercyjnej jednostki pomiarowej (IMU). Jednostka została zamocowana na ramieniu manipulatora umożliwiając określenie odchylenia tego ramienia względem globalnego układu współrzędnych. Robot został również wyposażony w dwa enkodery inkrementalne. Wyniki pozwoliły na porównanie estymaty kąta odchylenia ramienia robota obliczonej z jednostki IMU oraz enkodera. W pracy zweryfikowano wpływ położeniu czujnika IMU na jakość estymaty. Sprawdzeniu poddane zostały również nastawy algorytmu estymującego kąt odchylenia. Ostatecznie zweryfikowano działanie wybranego algorytmu estymującego kąt przy różnorodnych wymuszeniach ruchu manipulatora. Celem pracy było sprawdzenie metod estymujących kąt przy użyciu IMU w układach z napędem hydraulicznym.
EN
Typically, an inertial navigation system (INS) is used to determine the position, speed, and orientation of an object moving relative to the earth's surface. The navigation information (position, speed and orientation) of an unmanned aerial vehicle (UAV) is needed to control its flight. Since the resistance of INS to interferences is very high, it is possible to ensure reliable flights in conditions of high-intensity noise. This article explores the principles of constructing inertial measurement units (IMU) that are part of the INS and indicates perspective directions for their development. Micro-electromechanical inertial measurement units were studied in this work, and functional and principal electrical circuits for connecting units of inertial measurements to the microcontroller were developed. The results of practical measurements of units without calibration and after calibration were obtained using the created laboratory device. Based on the obtained results, the necessity of sensor calibration was revealed, and accuracy was improved by performing calibration with the Kalman filter algorithm. The Kalman filter is the heart of the navigation system. In a low-cost system, IMU errors like bias, scale factor error and random walk noise dominate the INS error growth.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.