Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  induced vibration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Reduction of train-induced vibration in buildings
100%
EN
There are many ways of reducing the transmission of train-induced vibration into buildings. One such measure is the use of floating-slab track whereby the track is mounted on a concrete foundation resting on isolation bearings. Impressive claims are often made regarding its effectiveness by referring to simple mass-spring models. However, some recent work, reviewed in the initial part of this paper, suggests that the effectiveness of floating-slab track for underground railways can be severely limited by interactions with the tunnel and surrounding soil. The paper goes on to discuss base isolation of buildings as an alternative to vibration countermeasures at source. Again, simple mass-spring models are often used to make predictions of isolation performance which are far too optimistic. Alternative models are discussed with a view to developing a more appropriate means of assessing isolation performance.
2
Content available remote Experimental and computational approach to human brain modelling – aHEAD
67%
EN
The human head is a highly complex structure, with a combination of hard and soft tissues and a variety of materials and interactions. Many researchers have used computational approaches to model the head, and several human finite element head models can be found in the literature. However, most of them are not geometrically accurate – for instance, the brain is simplified to a smooth spherical volume, which poses some concerns regarding boundary conditions and geometrical accuracy. Therefore, an advanced head model of a 28-year-old, designated as aHEAD 28 yo (aHEAD: advanced Head models for safety Enhancement And medical Development), has been developed. The model consists entirely of hexahedral elements for 3D structures of the head such as the cerebellum, skull and cerebrum, with detailed geometry of the gyri and sulci. Additionally, it is one of the first human head approaches published in the literature that includes cerebrospinal fluid simulated by Smoothed Particle Hydrodynamics (SPH) and a detailed model of pressurized bridging veins. To support the model’s credibility, this study is focused on physical material testing. A novel comprehensive experimental-computational approach is presented, which involves the brain tissue’s response to induced vibrations. The experiment successfully aimed to validate the material models used in the numerical analysis. Additionally, the authors present a kinematical model validation based on the Hardy experimental cadaver test. The developed model, along with its verification, aims to establish a further benchmark in finite element head modelling and can potentially provide new insights into injury mechanisms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.