Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  induced magnetic field
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The viscous incompressible electrically conducting fluid past an infinite porous vertical plate under the combined buoyancy effects of thermal and mass diffusion has been studied under the action of transverse applied magnetic field taking into account the induced magnetic field, when the plate is subjected to constant heat and mass fluxes (CHFlCMF). The analytical solutions are found for velocity field, temperature distribution, induced magnetic field, current density, concentration field and the expressions for shear stress and rate of heat transfer are obtained and discussed in detail with the help of figures.
EN
The objective of this investigation is to study the influence of thermal radiation and radiation absorption parameter on a mixed convection flow over a continuously moving porous vertical plate under the action of transverse applied magnetic field taking into account the induced magnetic field with convective boundary. Under certain assumptions, the solutions for the velocity field, temperature distribution and induced magnetic field are obtained. The influences of various parameters on the velocity, temperature fields and on induced magnetic fields are studied graphically. It is also found that the dimensionless Prandtl number, Grashof number, Schmidt number and magnetic parameter have an appreciable influence on the independent variables.
EN
This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of Chanel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which hale been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.
EN
This article addresses the impact of magnetic field induction on the buoyancy-induced oscillatory flow of couple stress fluid with varying heating. Modelled equations for the incompressible fluid are coupled and nonlinear due to the inclusion of viscous heating and thermal effect on the fluid density. Approximate solutions are constructed and coded on a symbolic package to ease the computational complexity. Graphical representations of the symbolic solutions are presented with detailed explanations. Results of the present computation show that the effect of induced magnetic field on the oscillatory flow and heat transfer is significant and cannot be neglected.
EN
The principal objective of the present paper is to know the reaction of thermal radiation and the effects of magnetic fields on a viscous dissipative free convection fluid flow past an inclined infinite plate in the presence of an induced magnetic field. The Galerkin finite element technique is applied to solve the nonlinear coupled partial differential equations and effects of thermal radiation and other physical and flow parameters on velocity, induced magnetic field, along with temperature profiles are explained through graphs. It is noticed that as the thermal radiation increases velocity and temperature profiles decrease and the induced magnetic field profiles increases.
EN
The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.