Reports fabrication of strained-layer InGaAs/GaAs separate-confinement-heterostructure single-quantum-well (SCH SQW) lasers operating in the wavelength range of 980 nm. Design process of the devices involved simulation of their above-threshold operation including all relevant physical phenomena. The lasers were characterized at room temperature in the pulsed operation regime at frequency v=5 kHz and pulse length tau =200 ns. Threshold current densities of the order J/sub th/=280 A/cm/sup 2/ and differential efficiency eta =0.40 W/A were obtained for devices with cavities of 700 mu m in length and broad contacts of 100 mu m in width
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We review our recent works on technology, basic physics and applications of one-dimensional photonic structures. We demonstrate spontaneous emission control in In/sub x/Ga/sub 1-x/As/GaAs planar microcavities with DBR reflectors. The room temperature emission in lambda -sized cavities is enhanced in comparison with its free space value, while in lambda /2-sized cavities suppression of spontaneous emission is observed. The characteristics of spontaneous emission in microcavities depend on the wavelength difference between the emitter and the cavity resonance. It has been shown that ideal tuning of the cavity can be achieved by adjusting sample temperature. In general, observed trends are in agreement with theoretical predictions. These changes to the spontaneous emission process directly affect vertical-cavity laser (VCSEL) properties. An increased coupling efficiency of spontaneous emission into the lasing mode is observed in VCSELs with lambda -sized cavities. We demonstrate the operation of resonant-cavity light emitting diodes (RC LED) and optically pumped VCSELs developed recently at the Department of Physics and Technology of Low Dimensional Structures of the Institute of Electron Technology. The epitaxial growth issues, fabrication technology and basic characteristics of these devices are discussed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.