We present a new class of numerical methods for quasilinear parabolic functional differential equations with initial boundary conditions of the Robin type. The numerical methods are difference schemes which are implicit with respect to time variable. We give a complete convergence analysis for the methods and we show that the new methods are considerable better than the explicit schemes. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given functions with respect to functional variables. Results obtained in the paper can be applied to differential equations with deviated variables and to differential integral problems.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Classical solutions of the local Cauchy problem on the Haar pyramid are approximated in the paper by solutions of suitable quasilinear systems of difference functional equations. The numerical methods are difference schemes which are implicit with respect to time variable. A complete convergence analysis for the methods is given and it is shown that the new methods are considerable better than the explicit schemes. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type. Numerical examples are given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.