We introduce a bounded lattice L = (L;∧,∨,0,1), where for each p ∈ L there exists an antitone involution on the interval [p,1]. We show that there exists a binary operation · on L such that L is term equivalent to an algebra A(L) = (L;·,0) (the assigned algebra to L) and we characterize A(L) by simple axioms similar to that of Abbott's implication algebra. We define new operations ⊕ and ¬ on A(L) which satisfy some of the axioms of MV-algebra. Finally we show what properties must be satisfied by L or A(L) to obtain all axioms of MV-algebra.
We study commutative directoids with a greatest element, which can be equipped with antitone bijections in every principal filter. These can be axiomatized as algebras with two binary operations satisfying four identities. A minimal subvariety of this variety is described.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We introduce the concepts of pre-implication algebra and implication algebra based on orthosemilattices which generalize the concepts of implication algebra, orthoimplication algebra defined by J.C. Abbott [2] and orthomodular implication algebra introduced by the author with his collaborators. For our algebras we get new axiom systems compatible with that of an implication algebra. This unified approach enables us to compare the mentioned algebras and apply a unified treatment of congruence properties.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.