In this paper we study range projections of idempotents m C*-algebras, and use them to obtain a Schur type decomposition that leads to simple proofs of results on Moore-Penrose inverse and norms of idempotents. We analyze the continuity of range projections, obtain a general result on their approximation, and recover a result of Vidav on two projections in a Hilbert space. Several representations of range projections are given.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a sequence $(A_j)$ of mutually orthogonal projections in a Banach space, we discuss all possible limits of the sums $S_n = ∑^n_{j=1} A_j$ in a "strong" sense. Those limits turn out to be some special idempotent operators (unbounded, in general). In the case of X = L₂(Ω,μ), an arbitrary unbounded closed and densely defined operator A in X may be the μ-almost sure limit of $S_n$ (i.e. $S_{n}f → Af$ μ-a.e. for all f ∈ 𝓓(A)).
In this paper we consider the semigroup Mₙ of all monotone transformations on the chain Xₙ under the operation of composition of transformations. First we give a presentation of the semigroup Mₙ and some propositions connected with its structure. Also, we give a description and some properties of the class $J̃_{n-1}$ of all monotone transformations with rank n-1. After that we characterize the maximal subsemigroups of the semigroup Mₙ and the subsemigroups of Mₙ which are maximal in $J̃_{n-1}$.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.