Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydrogen fuel cell
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Hydrogen fuel in transportation
100%
EN
In the time, when the whole world is increasingly engaged in environmental protection, it is necessary to come up with a fuel alternative for transportation, which means generally abandon the use of non-renewable resources (petrol, oil and fossil fuel in general), as they are one of the many factors influencing the emergence of greenhouse gases and the associated global warming. In today's Europe, the pressure is put mainly on automotive companies, to search for sources other than conventional fuels. At present, there is a big boom in the area of electric cars powered from the power network – the vast majority of electric energy, however, is produced in fossil fuel power plants. The second option of possible development in this area is the use of hydrogen as an alternative fuel. This technology, whether it be direct combustion as in diesel or eventually in petrol engines, or energy production in a hydrogen fuel cell, is certainly the way suitable for further development. With hydrogen as a fuel, it is possible to reduce pollutants almost to zero. The article presents a comparison of electricity generated using renewable and non-renewable sources and focuses on a closer understanding of the myth of the dangers connected with using hydrogen as fuel. Furthermore, compares conventional fuels to re-newable hydrogen technologies and focuses on the hydrogen combustion engines together with hydrogen storage and application in transportation.
2
100%
EN
This paper proposes a new drive system for the ship propulsion. The drive power for propelling ship varies from few MW in a small cruise ship to hundreds of MW for large cargo ships. A typical cruise ship has a 6 MW drive whereas a cargo ship has 80 MW drive. Combustion drives are not sustainable and environment friendly. An idea of electric drive system using hydrogen fuel cell and necessary storage has been proposed. The hydrogen reformer develops hydrogen fuel cell using off-shore renewables like Wind, Wave and Solar power but the power handling capability of this fuel cell system (100 kW) restricts the application to the propulsion drives of several MW. The detail drive scheme describing; how multiple modular hydrogen fuel cell drives are integrated to develop variable power. The different options available for the propulsion system and factors affecting the choice are discussed in detail. Also, how such modular drives are helpful in controlling torque and power requirements is discussed. Replacement of electric drive reduces volume and weight of the ship and the available volume can be utilized for the storage and reform systems. The proposed paper will give a remarkable concept to overcome the challenges of utilizing hydrogen fuel cell to the larger scale and in future it can be extended to all other applications.
EN
The article presents new propulsion concepts and related new energy sources of modern means of transportation. One of them is hydrogen fuel cells, widely regarded as one of the most promising and alternative solutions due mainly to their ecological nature. Also presented, the biggest problem associated with the development of fuel cells which is hydrogen. A huge energy input is used to produce it. In addition, the storage of hydrogen is highly problematic. With the introduction of increasingly stringent changes regarding toxic emissions into the atmosphere and the move toward emission-free transportation, the article examines the possibilities of converting a ship's reciprocating internal combustion engine propulsion system into an environmentally friendly one. In the rest of the article, legal aspects affecting the reduction of the environmental impact of exhaust emissions in the maritime industry are presented. Examples of fuel cell applications in current means of transportation are also discussed. In the main part of the article, the ship to be converted is presented, along with the planned voyage route. The main engine was converted to alternative electric motors, and a reduction gearbox in the main propulsion system was also selected. The power requirements for converting conventional engines to electric motors and the capacity of the hydrogen storage tanks were then determined. An inverter was selected to convert the generated direct current to alternating current and batteries to store the generated electricity. The final part of the article will analyze the feasibility of converting the propulsion of a Panamax-type bulk carrier with a piston internal combustion engine into an environmentally friendly propulsion system using a hydrogen fuel cell. The analysis will be carried out in terms of cost-effectiveness and technical feasibility. The article ended with conclusions
4
75%
PL
W kwietniu 2017 r. na międzynarodowych targach Hannover Messe został zaprezentowany autobus elektryczno-wodorowy marki Ursus. Jest to już 3. generacja autobusów elektrycznych wprowadzona na rynek przez lubelskiego producenta. Artykuł zawiera prezentację 3 generacji autobusów elektrycznych. Prowadzone w sposób ciągły prace badawczo-rozwojowe skutkują zwiększeniem zasięgu kolejnych generacji - w niniejszym tekście przedstawiono zatem najważniejsze technologie wpływające na osiągi poszczególnych pojazdów. Firma Ursus rozwija również technologie w zakresie szybkiego bezobsługowego ładowania autobusów elektrycznych za pomocą pantografu. W artykule dokonano porównania wybranych parametrów poszczególnych generacji autobusów elektrycznych. Przedstawiono także ich wady oraz zalety w stosunku do tradycyjnego napędu opartego o silnik Diesla.
EN
In April 2017 at Hannover Messe presented electric-hydrogen bus produced by Ursus. It is already the third generation of electric buses introduced on the market by the manufacturer from Lublin. The article contains a thorough description of three generations of electric buses. It presents the most important technologies influencing the performance of each generation. Conducted in a continuous research and development activities result in expanding the autonomy of the next generations. Ursus company also develops technology for rapid maintenance-free charging systems for electric buses using the pantograph. In the article there was presented a comparison of selected parameters of each generation of electric buses. Article ends with the review of their advantages and disadvantages compared to the conventional power drivetrains based on Diesel engines.
EN
In 2018 during the 72nd session of the Maritime Environmental Protection Committee (MEPC) IMO adopted its initial strategy for the reduction of greenhouse gas emissions (GHG) from the ships to meet the Paris Agreement Goals, 2015. This is considered as a major milestone in formulizing a clear strategy by IMO towards its objective of reducing the global GHG emissions from the ships. The strategy had two primary objectives: the first was to decrease total annual GHG emissions by at least 50% by 2050 compared to 2008 levels. The second objective was to promote the phasing out of GHG emissions entirely. In 2020, the International Maritime Organization (IMO) conducted a study which revealed that greenhouse gas (GHG) emissions from shipping had increased by 9.6%. The rise in global maritime trade was identified as the main factor behind this increase. IMO's 2020 study also concluded that reducing GHG emissions by focusing only on energy-saving technologies and ship speed reduction would not be enough to meet the IMO's 2050 GHG reduction target. Therefore, greater attention needs to be given to the use of low-carbon alternative fuels. To understand the effectiveness of currently available technologies in reducing GHG emissions from ships, a literature survey was conducted in this study. The survey examined a range of related articles published between 2018 and 2022. This study aimed to identify the current stage and the quantity of literature available on various technologies and, more importantly, serve as a decision-making support tool for selecting a technology under specific circumstances in a quantitative manner. The technologies were divided into four groups: those that utilize fossil fuels, those that use renewable energy, those that use fuel cells, and those that use low-carbon or alternative fuels. The literature survey was conducted using Web of Science (WoS) and Google Scholar. The results of this study will also help to identify clear research gaps in comparing the effectiveness of various available technologies to reduce GHG emissions. Ultimately, the aim is to develop a comprehensive strategy that can be used to reduce GHG emissions from shipping and contribute to the global fight against climate change.
6
Content available remote The use of fuel cells to store energy from renewable sources
63%
EN
The paper characterizes the design, operation, classification and application of fuel cells and presents a proposal of an analysis of the cooperation of a laboratory hydrogen fuel cell with photovoltaic modules that constitute the power source for an electrolyser. The results of the tests conducted can constitute a substantive teaching basis.
PL
W pracy scharakteryzowano budowę, zasadę działania, klasyfikację i zastosowania ogniw paliwowych oraz przedstawiono propozycję analizy współpracy laboratoryjnego ogniwa wodorowego z modułami fotowoltaicznymi, stanowiącymi źródło zasilania dla elektrolizera. Wyniki przeprowadzonych doświadczeń mogą stanowić merytoryczną bazę w dydaktyce.
PL
Wodorowe ogniwa paliwowe przekształcają energię chemiczną uwolnioną w czasie reakcji utleniania wodoru w energię elektryczną. Aby to było możliwe, konieczne jest fizyczne rozdzielenie reakcji połówkowych: redukcji i oksydacji. W większości tego typu ogniw tę separację pełni membrana polimerowa. Poza zadaniem rozdzielania przestrzeni anody i katody ogniwa spełnia ona funkcje elektrolitu przenoszącego jony wodoru między elektrodami oraz izolatora ze względu na przewodnictwo elektronowe. W artykule przedstawiono wyniki badań dotyczące wpływu natężenia przepływu tlenu przez przedział katody ogniwa paliwowego na membranę polimerową, a w szczególności jej konduktywność jonową. Przedstawione wyniki badań, wskazują na pośredni wpływ wartości natężenia przepływu tlenu na konduktywność jonową membrany w ogniwach paliwowych PEM.
EN
Hydrogen fuel cells convert chemical energy, released during the hydrogen oxidation reaction, into electric one. To perform this task, it is necessary to separate physically the halfreactions: oxidation and reduction. In most cases, this separation function is carried out by the special polymer membrane. Beside the task of anode/cathode gas separation, it also acts as an electrolyte responsible for proton exchange between electrodes of the cell and also electrically isolates the electrodes from each other to prevent the direct electronic current flow between them. The paper presents the research results related to the influence of the oxygen flow intensity through the cathode of the fuel cell on the polymer membrane and especially on its ion conductivity. The presented results indicate indirect influence of the oxygen flow intensity on the ionic conductivity of the polymer membrane in the PEM fuel cells.
9
63%
|
2024
|
tom Vol. 18 No. 1
25--33
EN
Emissions from the sea transport sector are one of the major contributors to the climate change due to extreme dependency on fossil fuels. Environmental revolution has pushed shipping to focus significantly on the potential application of different cleaner fuels and sustainable source of energy solutions. The global shipping industry is considering alternative fuel options that meet economic feasibility and safety requirements. There is a variety of alternative fuel types available for shipping, such as liquefied natural gas (LNG), methanol, hydrogen, ethanol, ammonia and others. For many years, the advantages and disadvantages of using selected alternative fuels have been analysed from the point of view of sea transport costs. This paper presents the basic parameters for comparing different fuels, the characteristics needed to adopt alternative fuels in maritime transport. In addition, it provides an overview of the main technical challenges and drivers for the adoption of alternative marine fuels assessed through infrastructural, economic and environmental dimensions.
EN
Presently, we can learn and read more and more about hydrogen in both traditional and social media. The article answers why there is so much interest in hydrogen recently. It has been recognized by European and global decision-makers as a very promising medium necessary to carry out the climate and energy transformation. The advantages of hydrogen as a fuel and as a medium for storing large amounts of energy over a longer period of time is also presented. In addition, an overview of hydrogen technologies presented at the Hydrogen Technology Expo in Bremen in September 2023 is provided. The state of hydrogen technologies currently available on the market is compared to the latest achievements of scientists described in scientific articles. The aim of the article is to review the technologies available on the market for the production, storage and use of hydrogen as a vehicle fuel. Hydrogen technologies presented at the Hydrogen Expo in Bremen were confronted with the latest scientific achievements described in the latest scientific articles. Thanks to such a confrontation, it is possible to make a rational purchasing decision in the area of selected hydrogen technologies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.