Geological models play a crucial role in the description and simulation of fluid flow of both hydrocarbon- and water-bearing strata. Methodology, based on the hydraulic flow unit build on the basis of core plug data combined with rock types determined from logs and 3D seismic cubes generated on the basis of 2D seismic sections is presented. It works as a possible exploration tool for the Miocene gas accumulations in the Carpathian Foredeep of Poland. Deterministic and stochastic, geostatistical methods were used to construct a static reservoir model from 2D seismic sections, lithological data and hydraulic flow unit data. A pseudo-3D seismic volume was generated from all of the 2D seismic data available, in order to aid the modelling of hydraulic flow units. This approach is applicable to other reservoirs, where the availability of seismic data is limited. This study demonstrates that even without 3D seismic data and with limited well log data, the proposed hydraulic flow unit approach can be successfully applied to reservoir modelling through the integration of diverse data sets for a wide range of scales.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, the low-permeability reservoir was subdivided into several units based on three models; in the first model, porosity, permeability, pore sizes, and shale volume were used as an input in the heterogeneous rock analysis clustering workflow to define rock units; in the second model, rock types were defined using flow zone index. The third flow unit discriminator was proposed by the author; the model is based on relation between porosity, permeability, irreducible water saturation, and pore size distribution. Also, Wyllie–Rose equation for permeability in tight reservoir was core-calibrated, and coefficients e, d, and Kw were established. The reservoir is built of thin layers of sandstones with variable porosity, permeability, pore sizes, and irreducible water. The research was performed in two wells where as input well log data, the laboratory results of mercury injection porosimetry, permeability measurements, and nuclear magnetic resonance data were used. Furthermore, it was investigated whether the presence of fractures identified on XRMI images were strictly related to one flow unit.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.