The article continues a presentation of modern quantum mathematics backgrounds started in [1]. A general approach to quantum holonomic computing based on geometric and Lie-algebraic structures on Grassmann manifolds and related with them Lax type flows is proposed. Making use of the differential geometric techniques like momentum mapping reduction, central extension and connection theory on Stiefel bundles it is shown that the associated holonomy groups properly realizing quantum computations can be effectively found concerning their application in diverse practical problems.
PL
Artykuł kontynuuje przedstawienie nowoczesnych podstaw matematyki kwantowej zaczęte w pracy [1]. Zaproponowane ogólne podejście do obliczeń kwantowo-holonomicznych bazowane na geometrycznych i Lie-algebraicznych strukturach na rozmaitościach Grassmanna oraz skojarzonych z nimi potoków typu Laxa. Korzystając z różniczkowo-geometrycznych metod, w tym odwzorowania pędu, rozszerzenia centralnego i teorii koneksji na wiązkach Stiefela pokazano, że skojarzone grupy holonomii, właściwie realizujące obliczenia kwantowe, mogą być efektywnie znalezione stosownie do ich zastosowań do wielu zagadnień praktycznych.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.