Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  heavy metal fraction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Sewage sludge used for reclamation of egraded areas or in agriculture must have a certain total heavy metal content, as required by law. In practice, however, it is important to carry out a fractional analysis of the elements contained in the sludge. This activity allows to determine the chemical form of a given metal, thanks to which it is possible to assess the assimilability of elements by plants. The study proved that the fraction of certain metals in sewage sludge can vary depending on the period studied. The combination of elements with other compounds in sludge from one treatment plant can vary from month to month. Once analysis has been carried out, it should not be the basis for assessing the bioavailability of metals if sludge from a given treatment plant were to be sampled several times a year.
EN
Assessment of the assimilability of elements contained in sewage sludge can only be carried out if their fractions, by means of which the chemical form of the element can be identified, are determined. The total content of heavy metals only makes it possible to determine whether the sludge meets the legal requirements and can be used, inter alia, for reclamation, in agriculture or for the adaptation of land to specific needs that result from waste management plans. Therefore, when planning the agricultural use of sewage sludge, attention should be paid above all to the heavy metal fractions contained in it. This is due to the fact that plants do not assimilate every form of element to the same extent. The research and analysis carried out indicate that the metals were most closely related to fractions IV and III, for example they formed connections with silicates, as well as sulphides and organic matter. The metal forms available to plants occupied a small percentage of the total heavy metal content. It was noted that with the metastable fraction of lead increased along with population equivalent. Furthermore, the population equivalent value did not affect the distribution of individual heavy metal fractions in the sludge.
EN
The aim of our study was to estimate the influence of mineral fertilization on the contents of various copper and nickel forms in soil. It was based upon a field experiment made up of ten plots. In average soil samples taken in 2002-04, the pseudo-total copper and nickel content was determined. Chemical forms of these metals, by modified BCR method, were also determined. The nickel content in particular fractions can be arranged quantitatively (average values) in order as follows: F2 (21%) > F3 (18%) > F1 (8%), in the case of copper: F2 (37%)>F3 (14%)>F1 (11%). The accumulation of nickel in the soil during the experiment was not observed. Whereas slight copper accumulation in some plots (with Polifoska 6, Polimag 305, calcium sulfate tetraurea and phosphogypsum) was noted. During the experiment the most mobile nickel and copper forms (soluble + exchangeable fraction) increased.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.