Główne cele projektu LHC: odkrycie bozonu Higgsa, badania antymaterii i plazmy kwarkowo – gluonowej osiągnęły etap coraz bardziej subtelnej analizy danych. Są poszukiwane nowe cząstki oraz zjawiska świadczące o istnieniu „nowej fizyki” wykraczającej poza Model Standardowy. Są planowane nowe eksperymenty, pozwalające na uzyskanie jeszcze wyższych energii niż w LHC. Zarówno w pomysłach na nowe eksperymenty, jak i w interpretacji danych Polacy mają spore sukcesy.
EN
The main goals of the LHC project: the discovery of the Higgs boson, the study of antimatter and quark – gluon plasma have reached the stage of increasingly subtle data analysis. New particles and phenomena are being sought that testify to the existence of a “new physics” that goes beyond the Standard Model. New experiments are planned to allow for even higher energy than in the LHC. Both in ideas for new experiments and in the interpretation of data, Poles are quite successful.
ILC machine–International Liner Collider, is one of two accelerators e+e-just under design and advanced consideration to be built with final energy of colliding electron and positron beams over 1 TeV. An alternative project to ILC is CLIC in CERN The ILC machine is an important complementary addition for the research potential of the LHC accelerator complex. The required length of ILC is minimally 30 km, but some versions of the TDR estimates mention nearly 50km. Superconducting RF linacs will be built using well established 1,3 GHz TESLA technology using ultrapure niobium or Nb3Sn resonant microwave cavities of RRR class, of ultimate finesse, working with gradients over 35MV/m, while some versions of the design mention ultimate confinement as high as 50MV/m. Several teams from Poland (Kraków. Warszawa, Wrocław – IFJ-PAN, AGH, UJ, NCBJ, UW, PW, PWr, INT-PAN) participate in the global design effort for this machine – including detectors, cryogenics, and SRF systems. Now it seems that the ILC machine will be built in Japan, during the period of 2016-2026. If true, Japan will turn to a world super-power in accelerator technology no.3 after CERN and USA. The paper summarizes the state-of-the-art of technical and administration activities around the immense ILC and CLIC machines, with emphasis on potential participation of Polish teams in the global effort of newly established LCC –The Linear Collider Consortium.
Przedstawione tu opracowanie zawiera informacje dotyczące metody pomiarów czasowo-przestrzennych charakterystyk zderzeń relatywistycznych hadronów i ciężkich jonów poprzez analizę korelacji cząstek emitowanych w badanych zderzeniach. Rozwijana przez prawie pół wieku metoda femtoskopii korelacyjnej stanowi piękny przykład związków odległych na pozór działów fizyki, wzajemnej stymulacji metod eksperymentalnych i opisu teoretycznego, oraz roli uzyskiwanych wyników w rozumieniu mechanizmów badanych procesów. Dlatego eksperymentalne aspekty tej metody przedstawione zostały na tle jej historycznego rozwoju oraz w zestawieniu z opisem podstaw teoretycznego formalizmu i parametryzacji efektów korelacyjnych, a także roli femtoskopii w rozwoju modeli teoretycznych. Praca rozpoczyna się od wstępu, po którym następuje wprowadzenie w zderzenia ciężkich jonów. Mimo iż większość pracy opisuje badania z zakresu zderzeń ciężkich jonów, wspomniane zostaną takie wyniki femtoskopowe pochodzące ze zderzeń elementarnych, np. proton-proton, które są traktowane jako dane referencyjne - punkt odniesienia. Rozdział trzeci został poświęcony drodze rozwoju femtoskopii korelacyjnej, w którym zostały zebrane najważniejsze, femtoskopowe "kamienie milowe", począwszy od prekursorów, inspiracji, poprzez pierwsze rozważania teoretyczne oparte na interferometrii pionów i opisie statystyki kwantowej, korelacje układu dwóch protonów oraz ich oddziaływaniu w stanach końcowych. Pokazano także pierwsze wyniki eksperymentalne dotyczące układów neutralnych mezonów π0 oraz neutronów, kiedy to skupiano się na geometrycznej interpretacji rezultatów femtoskopowych. Końcowe lata ubiegłego wieku to bardzo dynamiczny rozwój nowych aspektów, to czas, kiedy zainteresowano się pojęciem asymetrii czasowo-przestrzennej w przypadku korelacji cząstek nieidentycznych, to także jakże intensywny rozwój nowych technik (m.in. imaging'u"). Wraz z uruchomieniem kompleksu RHIC w laboratorium w Brookhaven, XXI wiek otworzył przed naukowcami zupełnie nowe możliwości. Po raz pierwszy w historii zarejestrowane zostało przejście materii ze stanu hadronowego do stanu kwarkowego, korelacje femtoskopowe naturalnie towarzyszyły przełomowym odkryciom. Kilkanaście lat później okazało się, że o ile rejestracja nowego stanu była przełomowa, kiedy to eksperymenty realizujące zderzenia ciężkich jonów zweryfikowały przypuszczenie odnośnie stanu plazmy kwarkowo-gluonowej, kiedy zamiast spodziewanych własności gazu idealnego plazma okazała się być niemalże idealną cieczą - to sam moment przejścia fazowego ze stanu hadronowego do kwarkowego wydał się także, o ile nawet nie bardziej, interesujący. W tym celu fizycy eksperymentalni skierowali swoje zainteresowanie w stronę niższych energii zderzenia, które pozwoliły przyjrzeć się charakterystykom przejścia fazowego. Badania okazały się być na tyle fascynujące, że obecnie planowane jest uruchomienie kolejnych kompleksów, które pozwolą eksplorować ten obszar diagramu fazowego z jeszcze większą precyzją. Po przeglądzie dotychczasowych osiągnięć oraz omówieniu potencjalnych perspektyw rozwoju został opisany formalizm korelacji femtoskopowych, skupiający się zarówno na omówieniu różnych efektów korelacyjnych dla różnych układów par (nieoddziałujących mezonów, barionów, cząstek nieidentycznych, itd.) z uwzględnieniem zarówno efektów statystyki kwantowej, jak i oddziaływań w stanach końcowych. Oddzielna część pracy została poświęcona różnym parametryzacjom funkcji korelacyjnej, począwszy od prac Kopyłowa-Podgoreckiego, po klasyczną, najczęściej teraz stosowaną parametryzację gaussowską, poprzez różne układy odniesienia, w jakich mierzone są korelacje femtoskopowe, aż po alternatywne parametryzacje funkcji korelacyjnych: sferyczne funkcje harmoniczne czy zależności azymutalne. Kolejny rozdział został poświęcony eksperymentom zderzeń ciężkich jonów jakie obecnie zajmują się badaniami korelacji femtoskopowych, m. in. STAR, ALICE, NA49 i NA61/SHINE, a także tym dopiero planowanym: CBM czy MPD. Bardzo wiele miejsca poświęcono w pracy na opis procedur analizy danych doświadczalnych, począwszy od omówienia kryteriów selekcji danych eksperymentalnych, aż po różne korekcje, którym należy poddać eksperymentalną funkcję korelacyjną: ze względu na zmierzone tło zawierające korelacje niefemtoskopowe (zostało omówione kilka różnych, niezwykłe istotnych przykładów takich korelacji, których nieuwzględnienie może prowadzić do błędnej interpretacji wyników), korekcje na skończoną rozdzielczość detektora czy możliwość poprawnej identyfikacji cząstki - ze względu na jej rodzaj, jak również ze względu na niemożność odseparowania produktów rozpadów od cząstek pierwotnych. Ostatni rozdział opowiada o tym, jakie znaczenie ma femtoskopia dla rozwoju modeli teoretycznych, zostały omówione przykładowe modele, które najczęściej są wykorzystywane w femtoskopii. Pracę zamyka krótkie podsumowanie, wnioski i możliwości dalszego rozwoju dziedziny femtoskopii korelacyjnej.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.