Consider the power series A(z)=∑∞n=1 α (n) zn, where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e2πil/q. We give effective omega-estimates for A(e(l/pk)r) when r→1−. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.