Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  gridsearchCV
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Microseismic (MS) monitoring is a short-term rockburst prediction technique that foretells the source, time and damage scale inside a rock mass during the rock fracturing process; however, due to the complex underground environment and mechanism of rockburst it is always hard to reliably predict the damage scale (severity) of rockburst manually; therefore, this paper introduces machine learning (ML) approach using nonlinear support vector machine (Nonlinear-SVM) to predict the short-term rockburst. Six indicators, cumulative number of events (N), cumulative seismic energy (E), cumulative apparent volume(V), event rate (NR), seismic energy rate (ER) and apparent volume rate (VR), are selected as an input indices for Nonlinear-SVM which is trained and tested with randomly selected 85 and 22 samples of rockburst cases, respectively, collected from different literature. The constructed model was employed to predict the short-term rockburst severity. After data standardisation, cross-validation and hyperparameter optimisation, the prediction accuracy reached 86% for the test sample. The predicted rockburst result truly matches the actual situation with few misclassifcations. Therefore, the proposed method has potential value for the short-term rockburst prediction task.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.