In this paper a new method for automatic segmentation and classification of fundus eye images (fei) into normal and glaucomatous ones is proposed. The segmentation of the cup region from the fei makes use of a morphological watershed transformation with markers imposed. New features for quantitative cup evaluation are found based on genetic algorithms with the proposed new fitness function. The computed features are then used in a classification procedure which is based on a multilayer perceptron. The mean sensitivity is 90%, while the mean specificity reaches 85%. The results obtained are encouraging.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.