Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  gravitational energy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
New theoretical and traditional quantitative solutions involving a pervasive unit quantum of ~10-20 J within biological and large-scale physical systems predicted that the mass of the human subject, subtle changes in gravitational phenomena, and the energy available within the cerebral volume should affect proximal random number variations produced by electron tunneling. In a series of experiments application of a specific, physiologically-patterned weak magnetic field over the right temporal lobe significantly enhanced the effects of intention upon deviations from random variations created by electron tunneling devices at a distance of 1 m. These variations were strongly (r ~0.80) correlated with the coupling between the forces from the background free oscillations of the earth and the energy differences across the cell width between lunar perigee and apogee. The results support the approach that complex cognitive processes including “intention” can be described by physicochemical parameters and their magnitude of energies are within the range by which interactions or modulations from subtle gravitational forces applied across the cellular membrane and width might occur.
EN
Although the gravitational energy within the distance of the radius of a singularity for a current estimated mass of the universe is equal to ~1069 Joules, congruent solutions for different ages of the universe reflect changes by a factor of π or 8π for identities. The total energy value is equal to the product of primary constants G·μ·ε·ħ·σ·c2 (which results in power, W) when divided by the area of smallest unit of space (area of a circle with a radius of Planck’s Length) and then multiplied by the universe’s current surface area and age. The conspicuous discrepancies of ~2∙103 between the predicted average magnetic intensity within the universe from that total energy and contemporary measurements can be accommodated by the quantitative product of 21.3π4 derived from the classic four-dimensional metric. The equivalent electric field potential divided by the predicted magnetic intensity results in a velocity that has been suggested to reflect the latency for excess correlations to occur across the universe. The most parsimonious explanation for these results is that a large component of the magnetic manifestation of energy in the universe is recondite or occluded within its submatter spatial structure and that the required cohesion or “diffusivity” throughout the volume involves the electric field component. These quantifications may facilitate understanding of Mach’s principle that any part of the universe is influenced by all of its parts.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.