We study shifted generalized Mehler semigroups on white noise functionals. We prove characterizations of invariant (white noise) distribution and the covariance property for shifted generalized Mehler semigroups. Also, we prove a Liouville type property of a shifted generalized Mehler semigroup or its infinitesimal generator.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It is shown that operator-selfdecomposable measures or, more precisely, their Urbanik decomposability semigroups induce generalized Mehler semigroups of bounded linear operators. Moreover, those semigroups can be represented as random integrals of operator valued functions with respect to stochastic Lévy processes. Our Banach space setting is in contrast with the Hilbert spaces on which so far and most often the generalized Mehler semigroups were studied. Furthermore, we give new proofs of the random integral representation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.