In this paper, we propose a highly efficient algorithm to model the human skin color. The algorithm involves generating a discrete Cosine transform (DCT) at each pixel location, using the surrounding points. The DCT coefficients incorporate the pixel color and texture information to distinguish between skin and non-skin. A generalized Gaussian distribution (GGD) is used in this framework to model the DCT coefficients at low frequencies. Next, the model parameters are estimated using the maximum-likelihood (ML) criterion applied to a set of training skin samples. Finally, each pixel is classified as skin if its likelihood ratio exceeds some threshold. The experimental results show that our model avoids excessive false detection while still retaining a high degree of correct detection.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.