In a climax community where all species are sharing relatively similar and stable habitat, there are differences in leaf traits between deciduous trees and shrubs and dominant species and companion species, especially in leaf lifespan (LLs). What are the differences of relationships among leaf traits between deciduous trees and shrubs? What are the mechanisms of this phenomenon? Here, we presented a one-year observation and recorded the LLs followed a modified method in a Quercus aliena var. acuteserrata forest in the north slope of the Qinling Mountains, China. We found that (i) Different species in the same stand performed quite differently in their LLs (P <0.005). Average LLs of shrubs was slightly longer (P = 0.05) than that of deciduous trees. (ii) LLs showed a significant negative correlation with specific leaf area (SLA) and leaf nitrogen content (LNC) (P <0.05) in deciduous trees, however, a significant positive correlation with LNC and leaf carbon content (LCC) (P <0.05) was detected in shrubs. (iii) The comparison of the traits between dominant and companion species in arbor layer and shrub layer showed that there was no significant difference in LLs, LCC and LNC, except SLA in arbor layer. Our study indicated that the amount of light, at the community scale, might be a main factor determining the LLs of wood plants in deciduous forest. The difference between trees and shrubs in relationships among leaf traits suggests that deciduous trees and shrubs may take different strategies to adapt to the environment. SLA is likely to be a marker trait to distinguish dominant and companion species in arbor layer of deciduous broad leaved forest
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It has been observed that leaf morphology shift within species is linked to climate change, but there are few studies on the effects of altitude change on leaf morphology of species. We hypothesized that similar to climate change, a morphological shift within species would occur over time under different growing altitudes. In this study, we evaluated three dominant grass species: Elymus nutans Griseb., Kobresia capillifolia Clarke., Carex moorcroftii Boott., taking advantage of the altitudinal variations (3000-4000 a.s.l.) on the Qinghai-Tibetan Plateau. Our study showed that almost all leaf traits of these three species had significant differences (P <0.05) across an altitudinal gradient. Different species responded differently to altitude change. Leaf thickness (LT) of the three species increased with increase in altitude. Leaf area (LA) of E. nutans and C. moorcroftii decreased with increasing altitude, but that of K. capillifolia increased. There was no obvious linear effect on leaf dry matter content (LDMC) and specific leaf area (SLA) of these three species. LDMC of E. nutans and C. moorcroftii showed a trend of increase, while that of K. capillifolia decreased. SLA of E. nutans and K. capillifolia showed a trend of increase, but that of C. moorcroftii decreased with increase in altitude. In addition, soil pH (pH) and air temperature (AT) decreased with increase in altitude. However, other soil and climate factors increased as altitude increased. The finding of this work is that leaf morphology shift within species happens under altitude change to adapt to specific environment.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.