Biomedical accelerators used in radiotherapy are equipped with detector arrays which are commonly used to obtain the image of patient position during the treatment session. These devices use both kilovolt and megavolt x-ray beams. The advantage of EPID (Electronic Portal Imaging Device) megavolt panels is the correlation of the measured signal with the calibrated dose. The EPID gives a possibility to verify delivered dose. The aim of the study is to answer the question whether EPID can be useful as a tool for interfraction QC (quality control) of dose and geometry repeatability. The EPID system has been calibrated according to the manufacturer’s recommendations to obtain a signal and dose values correlation. Initially, the uncertainty of the EPID matrix measurement was estimated. According to that, the detecting sensitivity of two parameters was checked: discrepancies between the planned and measured dose and field geometry variance. Moreover, the linearity of measured signal-dose function was evaluated. In the second part of the work, an analysis of several dose distributions was performed. In this study, the analysis of clinical cases was limited to stereotactic dynamic radiotherapy. Fluence maps were obtained as a result of the dose distribution measurements with the EPID during treatment sessions. The compatibility of fluence maps was analyzed using the gamma index. The fluence map acquired during the first fraction was the reference one. The obtained results show that EPID system can be used for interfraction control of dose and geometry repeatability.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.