Activated tungsten inert gas (ATIG) welding has a good depth of penetration (DOP) as compared to the conventional tungsten inert gas (TIG) welding. This paper is mainly focused on ATIG characterization and mechanical behavior of aluminum alloy (AA) 6063-T6 using SiO2 flux. The characterization of the base material (BM), fusion zone (FZ), heat affected zone (HAZ) and, partially melted zone is carried out using the suitable characterization methods. The weld quality is characterized using ultrasonic-assisted non-destructive evaluation. A-scan result confirms that the ATIG welded samples have more DOP and less bead width as compared to conventional TIG. The recorded tensile strength of ATIG with SiO2 is better than the conventional TIG welding. The failure mode is ductile for ATIG welding with larger fracture edges and is brittle in the case of conventional TIG welding.
Magnetotelluric (MT) field data are usually presented as plots of amplitude and phase MT sounding data vs frequency. Visualization of resistivity changes of geoelectric complexes with the use of apparent resistivity and phase curves give qualitative results only. Quantitative interpretation of MT sounding curves is needed to get geoelectric parameters. For a 1D horizontally layered earth, amplitude curves (apparent resistivity curves) and phase curves can be transformed into apparent velocity curves versus depth of EM field penetration into the conducting earth. Apparent velocity curves can be approximated by straight-line segments corresponding to homogeneous geoelectric layer complexes. Each segment of the apparent velocity curve (with a given angle of inclination) is related with the resistivity and thickness of individual geoelectric complexes. For heterogeneous earth (2D or 3D) vertical component of the magnetic field is directly connected with boundary of geo-electric complexes. It can be used to express components of vectors of apparent velocity. For a 1D horizontally layered earth, a vector of apparent velocity has only the vertical component. For heterogeneous earth horizontal components of apparent velocity also are inducted. The angle of inclination of the total vector of velocity and its value depend on the geometry of studied structure.
PL
Podstawową wielkością prezentującą zmiany przewodnictwa elektrycznego górotworu z głębokością jest oporność pozorna jako funkcja częstotliwości pola magnetotellurycznego. Wizualizacja tych zmian, jak również granic struktur geologicznych, przez oporność pozorną ma charakter jedynie jakościowy, dalece przybliżony. Parametry przekroju geoelektrycznego uzyskujemy jedynie przez interpretację ilościową danych pomiarowych. W przypadku przekrojów geoelektrycznych 1D krzywe sondowań magnetotellurycznych możemy przetransformować w krzywe prędkości pozornej jako funkcje głębokości wnikania pola elektromagnetycznego w głąb badanego ośrodka. Krzywe te możemy aproksymować odcinkami linii prostych, a kąty nachylenia poszczególnych odcinków względem osi głębokości i ich punkty przecięcia są ściśle związane z opornościami i miąższościami poszczególnych warstw geoelektrycznych. W przypadku ośrodków niejednorodnych 2D i 3D wielkością bezpośrednio związaną z granicami kompleksów geoelektrycznych jest pionowa składowa pola magnetycznego. Przez tę wielkość możemy wyrazić składowe wektora prędkości pozornej. W obszarach 1D wektor prędkości redukuje się do składowej pionowej, natomiast w obszarach niejednorodnych generują się również składowe poziome. Kąt nachylenia całkowitego wektora prędkości do poziomu i jego długość są ściśle związane z geometrią badanej struktury.
A stab resistant vest is a reinforced piece of body armour designed to resist knife or needle attacks of different energy levels specifically to the upper part of the body (chest and abdomen) to save lives. The majority of armours limit several comfort parameters, such as free locomotion, respiration, flexibility and light weight, which determine efficient use by wearers and their willingness to wear. Currently available armours are usually made of a single plate, and although often segmentation is used with just a few but still quite large pieces, the materials are compact and bulky to wear. In this study, stab protective armor elements (scale-like elements) of 3 mm thickness and 50 mm diameter were designed, produced (3D printed) and tested for performance. Aramid fibre was used for its strength, durability and process ability to develop protection elements at unidirectional and multidirectional filling angles during 3D printing. The specimens were tested according to VPAM KDIW 2004. The specimens designed and developed with multidirectional filling angles of aramid resist the puncturing energy level K1 (25 J) with a penetration depth less than the maximum allowed for the K1 energy level by VPAM. These specimens showed a high protection level of relative small thickness (3 mm) and light weight (6.57 grams for the estimated area A ≈ 1963.5 mm2) as compared to the currently certified armors for K1 (for example, the aluminum mass is 13.33 grams for 2 mm thickness and 50 mm diameter).
PL
Kamizelka odporna na dźgnięcie to wzmocniony element kamizelki kuloodpornej zaprojektowany tak, aby był odporny na ataki nożem lub igłą, w szczególności w górnej części ciała (klatce piersiowej i brzuchu), tak aby ratować życie. Kamizelka taka powinna spełniać kilka parametrów komfortu, takich jak: swoboda poruszania się, oddychanie, elastyczność i niewielka waga, które decydują o efektywnym użytkowaniu przez użytkowników i ich chęci do noszenia. Obecnie dostępne kamizelki są zwykle wykonane z jednej płyty i chociaż często stosuje się segmentację z zaledwie kilkoma, ale wciąż dość dużymi elementami, materiały są zwarte i nieporęczne w noszeniu. W pracy zaprojektowano, wyprodukowano (wydrukowano w 3D) i przetestowano pod kątem wydajności elementy pancerza ochronnego (elementy przypominające łuski) o grubości 3 mm i średnicy 50 mm. Zastosowano włókno aramidowe ze względu na jego wytrzymałość, trwałość i zdolność do wytwarzania elementów zabezpieczających przy jednokierunkowych i wielokierunkowych kątach wypełnienia podczas druku 3D. Próbki badano zgodnie z VPAM KDIW 2004. Stwierdzono, że zaprojektowane i opracowane próbki były odporne na poziom energii przebicia K1 (25 J) przy głębokości penetracji mniejszej, niż maksymalna dopuszczalna dla poziomu energii K1 przez VPAM. Próbki te wykazały wysoki poziom ochrony przy stosunkowo małej grubości (3 mm) i niewielkiej wadze (6.57 g dla szacowanego obszaru A ≈ 1963.5 mm2) w porównaniu z obecnie certyfikowanymi pancerzami dla K1 (np.: masa aluminium wynosi 13,33 g dla grubości 2 mm i średnicy 50 mm).
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Praca opiera się na analizie obszernego zbioru danych doświadczalnych dotyczących projektowania betonu i jego właściwości, w którym część kruszywa drobnego zastąpiono pyłem marmurowym. Przygotowano 30 rodzajów betonów, w sumie 180 próbek sześciennych. W badaniach zastosowano zmienne stosunki: woda/cement: 0,4, 0,45 i 0,5, pył marmurowy/piasek: 0, 0,05, 0,1, 0,15 i 0,2, superplastyfikator/cement: 0, 0,25, 0,5, 0,75 i 1 oraz dwa moduły uziarnienia piasku: FM = 2,4 i FM = 3.0. Zbadano 28-dniową wytrzymałość na ściskanie i głębokość penetracji wody. Wyniki badań wykazują, że zaproponowane składy można wykorzystać do projektowania betonów różnych klas, w zależności od oczekiwanych właściwości betonu.
EN
This study aims to investigate the extensive test data on the mix design and mechanical properties of concrete by replacing parts of fine aggregates with marble dust. A full factorial experiment with 180 cubic samples of 30 mixes was used. The effects of water/cement ratio: 0.4, 0.45 and 0.5, marble dust/sand ratio: 0, 0.05, 0.1, 0.15 and 0.2, superplasticizer/cement ratio: 0, 0.25, 0.5, 0.75 and 1, and fineness modulus of sand [FM = 2.4 and FM = 3] on slump, 28-day compressive strength and depth of water penetration were determined. The results indicate that the proposed ratios can be used to enable the design of a concrete mix that corresponds to its required performance.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.