This article describes a method for planning the assembly of ship hulls that focuses on a welding sequence, takes into account subassembly processes and makes use of a previously built database of structures. Different degrees of similarity between structures are taken into account. The described research led to the development of an intelligent hybrid sequencing method for structure assembly that uses fuzzy clustering, case-based reasoning and evolutionary optimization. The method is called ‘Multi-case-Based Assembly Planning (MBAP)’. The method is developed to provide satisfactory solutions with low user effort. The analyses carried out show that the calculations are highly timeefficient. The developed evolutionary algorithm converges on sub-optimal solutions. The MBAP method can be directly implemented by any shipbuilder that assembles hulls. Apart from this, fuzzy clustering integrated with case-based reasoning can be applied in practice. The integration of fuzzy clustering and case-based reasoning has been taken to a level higher than previously described in the literature.
Struktura agrarna krajów Unii Europejskiej jest silnie zróżnicowana. W pracy porównano typy struktury obszarowej gospodarstw rolnych w krajach UE w latach 2005, 2010, 2013. Badania przeprowadzono na podstawie danych Eurostat-u. W oparciu o metodę klasyfikacji rozmytej wyodrębnione zostały grupy krajów podobnych pod względem rozkładu liczby gospodarstw (według grup obszarowych użytków rolnych). Na tej podstawie zidentyfikowano 4 typy struktury agrarnej krajów Unii Europejskiej. W okresie 2005-2013 typy badanej struktury uległy nieznacznym zmianom, natomiast zmienił się skład grup krajów charakteryzujących się danym typem struktury.
EN
The agrarian structure of farms in the countries of the European Union is very differentiated. The paper presents the comparison of the types of the agrarian structure of farms in the EU countries within in the years 2005, 2010 and 2013. The investigation was carried out on the basis of the Eurostat data. The application of the fuzzy set method of objects classification groups of countries thought to be similar with respect to the distribution of number of farms (according to areal groups of arable land). This foundation allowed for identification of 4 types of agrarian structure of EU countries. Within the period 2005-2013 types of the structure under investigation had undergone insignificant changes, although the contents of particular groups of countries of specific type of structure changed.
The purpose of the article is to find out which group of EU countires determined on the basis of the specific features of the area structure of their farms Poland belongs to. Two aspects of this structure were taken into account: the number of farms in particular size groups of farmland and the area of farmland they occupy. Poland’s situation was also presented in the regional context, taking into consideration the variety of agricultural activity. The research was based on data obtained from Eurostat and Statistics Poland for the year 2016. The following groups of farm area were considered: farmland under 2 hectares, 2–5 hectares, 5–10 hectares, 10–20 hectares, 20–50 hectares and 50 hectares and larger. Based on the fuzzy classification method, EU countries were classified into 4 groups according to the area structure of their farms. The results of the research demonstrated that Poland belongs to a group of countries with a high level of fragmentation of farms, jointly with Croatia, Greece, Spain, Portugal, Slovakia, Slovenia and Italy. Only 4 countries have a more fragmented farm structure: Bulgaria, Cyprus, Romania and Hungary. As regards the proportion of the area of farmland concentrated in large farms, it is unfavourable in Poland, also when compared to new EU member states, such as the Czech Republic, Slovakia, Hungary and Bulgaria. In Poland the largest farms, with an area of at least 50 hectares, account only for about 1/3 of the total farmland, which, except for Slovenia, is the lowest percentage in the entire EU.
PL
Celem badania omawianego w artykule jest określenie miejsca Polski wśród krajów Unii Europejskiej (UE) pod względem struktury obszarowej gospodarstw rolnych. Pod uwagę wzięto liczbę gospodarstw w grupach wielkościowych użytków rolnych (UR) oraz zajmowaną przez nie powierzchnię UR. Sytuacja Polski została przedstawiona także w ujęciu regionalnym ze względu na zróżnicowanie rolnictwa. Badanie przeprowadzono na podstawie danych Eurostatu i danych GUS za rok 2016. Uwzględniono następujące grupy obszarowe gospodarstw: do 2 ha UR, 2–5 ha, 5–10 ha, 10–20 ha, 20–50 ha, 50 ha i więcej. Za pomocą metody klasyfikacji rozmytej pogrupowano kraje UE w cztery zbiory złożone z obiektów o podobnej strukturze obszarowej gospodarstw. Wyniki badania pokazały, że Polska znajduje się w grupie krajów o dużym rozdrobnieniu gospodarstw, razem z Chorwacją, Grecją, Hiszpanią, Portugalią, Słowacją, Słowenią i Włochami. Bardziej rozdrobnioną strukturę gospodarstw mają jedynie Bułgaria, Cypr, Rumunia i Węgry. Pod względem powierzchni użytków rolnych skupionej w dużych gospodarstwach sytuacja w rolnictwie polskim przedstawia się niekorzystnie, także w porównaniu do nowych krajów członkowskich UE, takich jak Czechy, Słowacja, Węgry i Bułgaria. W Polsce gospodarstwa największe, o powierzchni co najmniej 50 ha UR, skupiają zaledwie ok. 1/3 ogółu UR i jest to (po Słowenii) najniższy odsetek w całej UE.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The research described in this paper concerns fuzzy classification of medical datasets obtained from diagnostic devices. Experimental studies were performed with use of fuzzy c-means algorithm. It was shown that despite the low accuracy of the results, fuzzy classification reduce the risks associated with the loss of internal relationships in the characteristics of the data, and thus increases the chances of finding the pathological cases, as well as taking preventive actions or therapy.
PL
W ramach niniejszej pracy przeprowadzona została klasyfikacja rozmyta w odniesieniu do medycznych zbiorów danych pozyskanych z urządzeń diagnostycznych. Zastosowana została rozmyta metoda k-średnich. Badania wykazały, że pomimo niskiej dokładności rezultatów, klasyfikacja rozmyta zmniejsza ryzyko związane z utratą wewnętrznych zależności w charakterystyce danych, a tym samym zwiększa szanse na stwierdzenie ryzyka patologii i tym samym szybsze podjęcie działań zapobiegawczych lub terapeutycznych.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.