Two new operators, namely, dependency vector (DV) and derived complement vector (DCV) are introduced in this paper to characterize the attractor basins of the additive fuzzy cellular automata (FCA) based associative memory, termed as fuzzy multiple attractor cellular automata (FMACA). The introduction of DV and DCV makes the complexity of the attractor basin identification algorithm linear in time. The characterization of the FMACA using DV and DCV establishes the fact that the FMACA provides both equal and unequal size of attractor basins. Finally, a set of algorithms is proposed to synthesize the FCA rules, attractors, and predecessors of attractors from the given DV and DCV in linear time complexity.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Continuous cellular automata (or coupled map lattices) are cellular automata where the state of the cells are real values in [0,1] and the local transition rule is a real function. The classical observation medium for cellular automata, whether Boolean or continuous, is the space-time diagram, where successive rows correspond to successive configurations in time. In this paper we introduce a different way to visualize the evolution of continuous cellular automata called Radial Representation and we employ it to observe a particular class of continuous cellular automata called fuzzy cellular automata (FCA), where the local rule is the "fuzzification" of the disjunctive normal form that describes the local rule of the corresponding Boolean cellular automata. Our new visualization method reveals interesting dynamics that are not easily observable with the space-time diagram. In particular, it allows us to detect the quick emergence of spatial correlations among cells and to observe that all circular FCA from random initial configurations appear to converge towards an asymptotic periodic behavior. We propose an empirical classification of FCA based on the length of the observed periodic behavior: interestingly, all the minimum periods that we observe are of lengths one, two, four, or n (where n is the size of a configuration).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper deals with a novel approach to a prediction of spatial distribution of electric energy consumers. This is one of the components of a long-term electric spatial load forecasting (SLF). The first part of the paper presents briefly an idea and research overview of SLF. Next, the authors describe the theoretical aspects of a fuzzy cellular automaton (FCA) to forecast the spatial distribution of electric energy consumers. Finally, the conclusions and the planned future works related to the FCA application in the SLF task are widely discussed.
PL
W artykule zaprezentowano nową metodę predykcji rozkładu przestrzennego odbiorców energii elektrycznej, która stanowi jeden z elementów procesu długoterminowego prognozowania przestrzennego zapotrzebowania na moc i energię elektryczną. W tym celu wykorzystano ideę rozmytego automatu komórkowego. Przedstawiono jego model matematyczny oraz zawarto wnioski dotyczące niniejszego zagadnienia.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.