The foundry industry in Poland and EU member states is growing steadily. The alloys based on ferrous metals (cast steel and cast iron) largely contribute to this upward trend. Currently, foundries are facing the problem of increasing requirements, which enforce the production of castings characterized by high dimensional accuracy and surface smoothness with parallel elimination of casting defects. Castings are mostly made in moulding sand mixtures, which are also subject to more and more stringent requirements to meet the above-mentioned casting acceptance conditions. Additionally, moulding sands should ensure adequate mould stiffness to avoid the risk of dimensional deformations during the pouring of liquid metal to this mould and casting solidification. For these reasons, the production of this type of castings has been dominated by loose self-hardening sands with furfuryl resin, commonly called furan sands. In the group of self-hardening sands with synthetic resins, loose self-hardening sands with furfuryl resin enjoy the greatest popularity. What accounts for this fact is the high level of the reclamability of these sands, the possibility of obtaining castings with high dimensional accuracy, the ability to make intricate moulds and cores, the binding process taking place at ambient temperature, and low content of binder. Unfortunately, this technology also has some disadvantages, which include short lifetime of the sand mixture, harmful gases emitted from the sand, and currently also high cost of the sand mixture. The anticipated tightening of the environmental protection regulations in the EU countries, including limiting the content of free furfuryl alcohol in resins (<25% by mass) and reducing the emission of furfuryl alcohol, formaldehyde and BTEX compounds at workplaces, necessitated the development of a new generation of furfuryl resins friendly to the environment. The article compares the results of testing the strength properties of foundry moulding sands using two types of resins, i.e. the resin of a new generation synthesized by Grupa Azoty JRCh and a commercial resin used in the foundry industry. Additionally, derivatographic studies of the above mentioned sand mixtures were conducted, and the loss on ignition and the amount of gases emitted by the sand mixture were determined. Melting was also carried out to study the impact of the resin used on the surface quality of iron castings.
Coraz ostrzejsze przepisy w zakresie ochrony środowiska wymuszają na producentach materiałów dla przemysłu odlewniczego opracowywanie nowych produktów, bardziej przyjaznych dla środowiska. Jednym z takich produktów są żywice furfurylowe, które obecnie mają największy udział w grupie mas no-bake. Wprowadzone w ostatnich latach w UE przepisy dotyczące ograniczenia zawartości wolnego alkoholu furfurylowego (< 25%) w żywicach oraz naciski w kierunku redukcji emisji SO2, formaldehydu, fenolu, benzenu i toluenu, jak również związków z grupy WWA, szczególnie na stanowiskach pracy spowodowały pojawienie się na rynku nowej generacji żywic furfurylowch oraz katalizatorów (o zmniejszonej zawartości siarki lub bezsiarkowych). W artykule dokonano analizy wpływu tych nowych produktów stosowanych w technologii mas z żywicami furfurylowymi na środowisko i warunki pracy.
EN
More and more strict regulations, concerning the environment protection, force the producers of materials for foundry industry to develop new products, more friendly for the environment. One of such products are furfuryl resins, which currently have the largest share within the group of no-bake moulding sands. Regulations introduced in the last years in the European Union concerning limitations of a free furfuryl alcohol content (< 25%) in resins as well as pressures to reduce SO2, formaldehyde, phenol, benzene, toluene and compounds from the PAHs group emissions, especially at work stands, caused an appearance of the new generation of furfuryl resins and catalysts (of a decreased sulphur content or even sulphur-free). The analysis of the influence of these new products, applied in the moulding sands with furfuryl resins technology, on the environment and work conditions was performed in the hereby paper.
No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified urea-furfuryl resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic) on a quartz matrix, under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method extended in the Faculty of Foundry Engineering (AGH University of Science and Technology). Article presents the results of the emitted chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on ignition.
Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.