We show a connection between the polynomials whose inflection points coincide with their interior roots (let us write shorter PIPCIR), Legendre polynomials, and Jacobi polynomials, and study some properties of PIPCIRs (Part I). In addition, we give new formulas for some classical orthogonal polynomials. Then we use PIPCIRs to solve some partial differential equations (Part II).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we introduce a new two-parameters generalization of Fibonacci numbers – distance s-Fibonacci numbers Fs (k, n). We generalize the known distance Fibonacci numbers by adding an additional integer parameter s. We give combinatorial and graph interpretations of these numbers. Moreover, we present some properties of distance s-Fibonacci numbers, which generalize known properties of classical Fibonacci and Padovan numbers.
PL
W artykule wprowadzono dwuparametrowe uogólnienie klasycznych liczb Fibonacciego - odległościowe s-liczby Fibonacciego. Przedstawiono kombinatoryczne i grafowe interpretacje tych liczb. Pokazane zostały także pewne ich własności, które uogólniają znane własności liczb Fibonacciego i liczb Padovana. Wyznaczona została także funkcja tworząca rozważanego ciągu.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.