Bottom Simulating Reflectors (BSRs) are considered to be the bottom of gas hydrate bearing sediments; hence, BSRs are used to identify gas hydrate and free gas. In order to obtain accurate velocity structure of BSRs, this paper presents a full waveform inversion strategy based on Genetic Algorithm. Synthetic seismograms are calculated using the slowness technique. Through numerical experiments made with noisy synthetic data, the inversion algorithm shows stable performance, and genetic operators are defined. This method was applied to field data from the northern South China Sea. Inversion results show that obvious velocity anomaly of BSRs can be detected, which indicates the existence of gas hydrate and free gas.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Elastic full waveform inversion (EFWI) is a powerful tool for estimating elastic models by reducing the misfit between multi-component seismic records and simulated data. However, when multiple parameters are updated simultaneously, the gradients of the loss function with respect to these parameters will be coupled together, the effect exacerbate the nonlinear problem. We propose a parametric EFWI method based on convolutional neural networks (CNN-EFWI). The parameters that need to be updated are the weights in the neural network rather than the elastic models. The convolutional kernel in the network can increase spatial correlations of elastic models, which can be regard as a regularization strategy to mitigate local minima issue. Furthermore, the representation also can mitigate the cross-talk between parameters due to the reconstruction of Frechét derivatives by neural networks. Both forward and backward processes are implemented using a time-domain finite-difference solver for elastic wave equation. Numerical examples on overthrust models, fluid saturated models and 2004 BP salt body models demonstrate that CNN-EFWI can partially mitigate the local minima problem and reduce the dependence of inversion on the initial models. Mini-batch configuration is used to speed up the update and achieve fast convergence. In addition, the inversion of noisy data further verifies the robustness of CNN-EFWI.
Sejsmiczność indukowana działalnością górniczą jest stale monitorowana i analizowana w celu zwiększenia bezpieczeństwa wydobycia kopalin. Jedną z procedur, chociaż niestosowanych rutynowo w polskim górnictwie węgla i miedzi, jest wyznaczanie mechanizmów ogniskowych silniejszych wstrząsów. Najprostszą i jak dotąd jedyną stosowaną metodą ich obliczania jest inwersja pierwszych wstąpień fali P w domenie czasu. Metoda ta pomimo swojej prostoty i możliwości bezpośredniej kontroli analizowanego wejścia fali sejsmicznej, jest procedurą bardzo czułą na geometrię sieci pomiarowej. Jest to szczególnie kłopotliwe w przypadku dołowych sieci kopalnianych, gdzie geometria sieci ograniczona jest istniejącą infrastrukturą podziemną. W niniejszym opracowaniu proponujemy i testujemy metodę inwersji pełnego pola falowego, przeprowadzaną w domenie częstotliwości oraz czasu, która do tej pory nie była powszechnie stosowana w polskim górnictwie. W oparciu o sejsmogramy syntetyczne obliczone dla lokalnego modelu prędkościowego oraz z wykorzystaniem geometrii rzeczywistej sieci monitoringu sejsmicznego, przeprowadziliśmy badanie przydatności inwersji pełnego pola falowego do obliczeń w warunkach górniczych. W pracy prezentujemy analizy 10 różnych modeli mechanizmów ogniskowych testowanych w różnych lokalizacjach kopalni dla zmiennej siły wstrząsu oraz z dodatkowym rzeczywistym szumem sejsmicznym. Na podstawie otrzymanych wyników możemy stwierdzić, iż głównym czynnikiem warunkującym jakość rozwiązania jest siła wstrząsu i wynikająca z niego zależność amplituda/szum. Natomiast metoda ta nie jest czuła na geometrię sieci pomiarowej.
EN
In order to improve the safety procedures of georesources exploitation, the induced seismicity is constantly monitored and examined. One of the procedures method, although even though not routinely used in Polish coal and copper mining mines, is the calculation of focal mechanisms of strong seismic events. The simplest and so far the only used method for source mechanisms estimation is the inversion of the first P wave onsets in the time domain. Despite its simplicity and the ability to direct control of analyzed seismic waves used during inversion, it is a procedure very sensitive to the geometry of the monitoring seismic network. This is particularly troublesome in the case of underground seismic monitoring system, where the geometry of the network is limited by the existing underground infrastructure. In this study, we propose and test the full waveform inversion method, performed both in the frequency and time domain. This kind of method has not been widely used in Polish miningmines. Basing on synthetic seismograms prepared for the local velocity model and using geometry of the real seismic monitoring network, we conducted a study of the suitability of the full waveform inversion for calculations in underground mining conditions. In this paper, we present analyzes of 10 different source models of focal mechanisms tested in various mine locations within mining area. The tests were performed for variable events strength and with additional real seismic noise. On the grounds of obtained results, we can conclude that the main factor determining the solution quality is the strength of mining tremor and amplitude/noise relationship resulting from it. However, this method is not sensitive to the geometry of the measurement network.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.