We study the properties of fractional differentiation with respect to reflection mapping in a finite interval. The symmetric and anti-symmetric fractional derivatives in a full interval are expressed as fractional differential operators in left or right subintervals obtained by subsequent partitions. These representation properties and the reflection symmetry of the action and variation are applied to derive Euler-Lagrange equations of fractional free motion. Then the localization phenomenon for these equations is discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.