In the paper, two mathematical and numerical models of the metals alloy solidification in the cylindrical channel of fluidity test, which take into account the process of filling the mould cavity with molten metal, has been proposed. Velocity and pressure fields were obtained by solving the momentum equations and the continuity equation, while the thermal fields were obtained by solving the heat conduction equation containing the convection term. Next, the numerical analysis of the solidification process of metals alloy in the cylindrical mould channel has been made. In the models one takes into account interdependence of the thermal and dynamical phenomena. Coupling of the heat transfer and fluid flow phenomena has been taken into consideration by the changes of the fluidity function and thermophysical parameters of alloy with respect to the temperature. The influence of the velocity or the pressure and the temperature of metal pouring on the solid phase growth kinetics were estimated. The problem has been solved by the finite element method.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the paper, two mathematical models of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity with molten metal during the vertical fluidity test, has been proposed. In the general model, velocity and pressure fields were obtained by solving the momentum equations and the continuity equation, whereas the thermal fields were obtained by solving the heat conduction equation containing the convection term. In the simplified model, making assumptions relating to both the material and the geometry of the region, the general equations for continuity and momentum have been reduced to single equation for pressure. This approach leads as to accelerate significantly of the fluid flow calculations. In this model, coupling of the thermal and fluid flow phenomena has been taken into consideration by the changes of the fluidity function and thermophysical parameters of alloy with respect to the temperature. The problem has been solved by the finite element method.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.