Production problems have a significant impact on the on-time delivery of orders, resulting in deviations from planned scenarios. Therefore, it is crucial to predict interruptions during scheduling and to find optimal production sequencing solutions. This paper introduces a selflearning framework that integrates association rules and optimisation techniques to develop a scheduling algorithm capable of learning from past production experiences and anticipating future problems. Association rules identify factors that hinder the production process, while optimisation techniques use mathematical models to optimise the sequence of tasks and minimise execution time. In addition, association rules establish correlations between production parameters and success rates, allowing corrective factors for production quantity to be calculated based on confidence values and success rates. The proposed solution demonstrates robustness and flexibility, providing efficient solutions for Flow-Shop and Job-Shop scheduling problems with reduced calculation times. The article includes two Flow-Shop and Job-Shop examples where the framework is applied.
The paper present the concept of stability assessing the of solutions which are construction schedules. Rank have been obtained through the use of task scheduling rules and the application of the KASS software. The aim of the work is the choice of the equivalent solution in terms of the total time of the project. The selected solution optimization task should be characterized by the highest resistance to harmful environmental risk factors. To asses the stability of schedule simulation technique was used.
PL
W artykule zaprezentowana została koncepcja oceny stabilności harmonogramów budowlanych. Harmonogramy są jednym z podstawowych narzędzi wykorzystywanym w zarządzaniu projektami budowlanymi. W przypadku projektów, które dotyczą harmonogramowania procesów jednego typu, jednorodnych lub niejednorodnych, istnieje wiele reguł, takich jak MS, FCFS, LPT, SPT, itp., które mogą być stosowane. Można również zastosować różnego rodzaju heurystyki, takie jak modele wąskich gardeł lub lokalnego przeszukiwania oraz wiele innych. Heurystyki te są tworzone każdego dnia. Procesy budowlane są szczególnie podatne na zagrożenia. Niepewność stała się jednym z głównych czynników wpływających na wykonanie projektu i na ostateczny sukces. Ryzyko w działalności budowlanej jest bardzo wysokie. To bardzo ważne, aby pracować z ryzykiem, jednym ze sposobów jest, wybór najbardziej stabilnego harmonogramu. Projekty budowlane charakteryzują się dużą liczbą uczestników. Planowanie projektu w niepewności i ryzyku jest przedmiotem licznych prac badawczych od czasu wprowadzenia modelu PERT. Istniejące metody, które wyrażają czasy trwania jako zmienne losowe, koncentrują się głównie na szacowaniu prawdopodobieństwa dotrzymania terminu dyrektywnego lub czasu trwania projektu na predefiniowanym poziomie ufności wyniku. W artykule zaprezentowane zostały metody oceny stabilności harmonogramów wykonanych z zastosowanie potokowych metod produkcji. Pierwszym rozpatrywanym zagadnieniem była ocena stabilności dwóch harmonogramów uszeregowaniem z zastosowaniem reguł SPT i LPT opracowanych dla procesów jednorodnych.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.