Flooding is a very dangerous phenomenon, causing both direct and indirect damage. The preventive actions result from the awareness of the danger and consequences of floods. In the affected areas, an important stage of management includes preventing and minimizing losses. The article presents a method for estimating the flood losses using flood hazard maps and taking into account the updated prices. Particular emphasis was placed on different risk levels of risk that are due to a flood in the examined location. The analysis was performed for the city through which three rivers flow. The generally available flood hazard maps in the Computerized National Protection System (Polish acr. ISOK), which include the information on the depth of the floodwater and land use classes, help estimate the financial losses. The research has shown that the greatest material losses caused by flooding are usually incurred in residential areas. On the basis of the results obtained, it was also determined that asset revaluation with time has a significant impact on the level of estimated losses. The article uses the methodology implemented in the Flood Risk Maps, which present the negative consequences for the population and the scope of flood losses. The results were compared with the author’s interpretation.
This paper presents application of flood scenarios, which are in possession of Coordination and Information Center for Flood Protection (OKI), a department of Regional Water Management Authority in Kraków. Flood scenarios describe situation during the flood on a specified area with definite flood hazard degrees. Flood scenarios contain information about water and levee elevation in specific crosssections and along longitudinal profiles of river beds, about discharge values in case of an overflow over levee and extent of the flood wave with determined exceedence probability or extent of historical floods. Flood scenarios are divided into static and dynamic ones. Static scenarios do not present flood distribution in time, but only the maximum extent of a flood wave with determined exceedence probability. On the other hand, dynamic scenarios present flood expansion in time taking into consideration, for instance,, levee breakage or washing out, polder opening, or influence of a retention reservoir. Additionally, both static and dynamic scenarios are divided into historical scenarios (with records of flood progression in the past) and hypothetical scenarios (models of floods with values calculated on the basis of the phenomenon that is probable to happen in the future, taking into consideration specific features of a basin ). In view of data availability, at present it is only possible to formulate static scenarios. The range of individual scenarios is connected with the range of flood wave transformation model, which is in possession of OKI. Nowadays OKI has flood scenarios for the following river sections: m Wisła from Goczałkowice reservoir to Gromiec water-gauge, m Wisła from Gromiec water-gauge to Smolice water-gauge, m Wisła from Smolice water-gauge to Popędzynka water-gauge, m Wisła from Popędzynka water-gauge to Karsy water-gauge, m Wisła from Karsy water-gauge to Szczucin water-gauge, m Wisła from Szczucin water-gauge to Sandomierz water-gauge, m Wisła from Sandomierz water-gauge to Zawichost water-gauge, m Soła below Czaniec reservoir to estuary, m Skawa below .winna Poręba reservoir to estuary, m Raba below Dobczyce reservoir to estuary, m Uszwica from Okocim resort to estuary, m Dunajec below Sromowce Wyżne reserwoir to the Rożnów reservoir backwater, m Dunajec below Czchów reservoir to estuary, m Nida below Czarna and Biała Nida joint to estuary, m Wisłoka from Jasło town to estuary, m San from Dynów water-gauge to estuary, m Wisłok from Łęki Strzyżowskie resort to estuary. Currently, OKI administers flood scenarios for the 1%, 2%, 10% and 20% exceedence probabilities for all river-sections specified above. Because of lack of Digital Model Terrain (DTM) for the whole area, flood hazard zones were formulated only for Wisła, Raba and Nida sections and enclosed to the flood scenarios. Flood hazard zones for others sections will be formulated and systematically enclosed in the future as databases in OKI within DTM are fulfilled. Works connected with new scenarios for other values of probability are proceeding all the time. The aim of this presentation is to show the results of these works and to get familiar with the role of the scenarios in thedecision supporting process in case of flood.
Minimalizacja strat powodziowych jest uzależniona od właściwego wyznaczenia zasięgu stref zalewowych, co wymaga opracowania modelu hydraulicznego w programie MIKE FLOOD. Przygotowanie danych wejściowych do modelu przeprowadza się w programach GIS. Jednym z powszechnie wykorzystywanych programów jest ArcGIS Desktop firmy ESRI. W artykule omówiono wybrane funkcje i narzędzia programu ArcGIS Desktop niezbędne do budowy modelu hydraulicznego na przykładzie zlewni rzeki Kłodnicy oraz wizualizacji otrzymanych wyników w postaci map zagrożenia powodziowego.
EN
Flood losses minimization is dependent on proper determining the extent of flood hazard zones what requires the development of a hydraulic model by means of MIKE FLOOD application. Preparation of the input data for the model is carried out using GIS software. One of the programmes commonly used is ArcGIS Desktop by ESRI. In the article selected functions and tools of the ArcGIS Desktop programme were presented - the functions and tools which are necessary to prepare the hydraulic model and to visualize the obtained results as flood hazard zones.
Oprogramowania tworzące mapy zagrożenia związanego z kataklizmem powodzi opierają się w dużej mierze na danych o terenie w formie numerycznego modelu terenu. Produkt ten generowany jest na podstawie danych ze skaningu laserowego, który dostarcza odpowiednio dokładne, ale i ogromne zbiory danych, stwarzające problemy dla skomplikowanych obliczeń przy modelowaniu hydraulicznym. W niniejszej pracy przedstawiono wpływ redukcji NMT na określanie miejsc potencjalnego wystąpienia katastrofy powodzi poprzez tworzenie map zagrożenia powodziowego. Numeryczny model terenu obszaru testowego poddany został znaczącej redukcji wybranymi metodami, co posłużyło do późniejszych analiz związanych z jej wpływem na wielkość obszaru zagrożonego katastrofą powodzi. Celem badania jest przede wszystkim udowodnienie istnienia możliwości wykorzystania jedynie nieznacznej części informacji zawartej w NMT dla stworzenia równie wysoko dokładnych opracowań co takie, dla pozyskania których wykorzystano oryginalne dane. Wyniki doświadczenia potwierdzają przypuszczenie o niewielkich rozbieżnościach w określeniu miejsc zagrożonych powodzią pomiędzy analizami z użyciem oryginalnych danych i tych poddanych różnowariantowej redukcji.
EN
Software for creating flood risk maps and simulation of flood water is based on Digital Terrain Model (DTM). Such product is generated on a basis of laser scanning data which provide appropriately accurate results and huge data sets as well, what causes many problems for hydrodynamic – numerical calculations. The essential issue for such data is high redundancy which can guarantee the opportunity to thin it out. However, it is possible to provide suitable DTM for flood modeling by its intelligent reduction, which could still ensure sufficient accuracy for application such as hydrodynamic modeling. In this paper, the impact of DTM reduction on determination of area at risk of flood disaster by creating flood hazard maps was presented. Digital terrain model of case study was significantly reduced with use of six selected methods, what gave possibility for subsequent analysis of reduction impact on the size of the area endangered by a flood disaster. This reduction was based on the automation of the process where points, containing key information, were retained while redundant points, duplicating information about terrain height, were removed from the data set. For comparison of the result of reduction, such reduced models were used in practice to determine flood risk by creating flood hazard maps for selected water levels. For each reduction method, flood simulation with different river water level (i.e. digital water surface model) was created. In this way, area endangered by flood was determined in result of the intersection of digital terrain model and digital water surface model. Size of such area was compared then for each approach with the results obtained on the basis of original DTM data and methods were assessed in terms of their accuracy, efficiency and suitability for presented issues. The aim of this research is particularly to prove that it is possible to use only small percentage of the information contained in DTM for the creation as highly accurate studies as can be obtained from original data. The results of experiment confirm the assumption of small disparities in identifying areas endangered by flood disaster between analysis with use of original data and those reduced by various methods. Difference between results from unreduced and reduced DTMs was very slight what proves that well-generalized models of terrain can be effectively used in that application.
W artykule dokonano oceny wpływu kształtu hietogramu opadu i czasu reakcji zlewni na opad na wielkości przepływów uzyskane z modelu NRCS-UH. Obliczenia wykonano na przykładzie zlewni Młynówki – lewostronnego dopływ Ropy, o powierzchni 18,03 km2. Do opisu hietogramu opadu wykorzystano metodę Kupczyk i Suligowskiego, zalecenia DVWK i funkcję rozkładu beta. Wrażliwość modelu NRCS-UH na parametry wejściowe sprawdzono z wykorzystaniem współczynnika elastyczności. Analiza wykazała, że hietogram opadu wpływa na parametry fal wezbraniowych. W wyniku badań okazało się, że największy przepływ w kulminacji uzyskano, gdy hietogram opadu odpowiadał zaleceniom DWVK. Model NRSC-UH jest wrażliwy na zmiany parametru CN – wzrost tego parametru o 1% prowadzi do zwiększenia przepływów Qmax o 1,1%. Mniejszy wpływ na wartości wyjściowe z modelu ma czas opóźnienia.
EN
The article assesses the impact of rainfall hyetograph shape and reaction time of the catchment on flow from the NRCS-UH model. Calculations were performed on the example of Mlynowka stream – left-tributary of the Ropa river, with area equall 18.03 km2. To describe the precipitation method was used Kupczyk and Suligowskiego method, hyetograph recommendations by DVWK and described by function of beta distribution. The sensitivity of the model NRCS-UH for the input parameters were performed using the coefficient of elasticity. The analysis showed that rainfall hyetograph influence on wave of flood. In this study it was found that the largest peak flow obtained when DWVK rainfall hyetograph was use. NRSC-UH model is sensitive to changes in parameter CN – an increase of 1% CN parameter leads to an increased Qmax discharge by 1.1%. Less impact on the output values of the model has a lag time.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.