Purpose: Miniaturisation generates necessity of micro-parts production. Micro-scale means closer tolerances and better surface roughness. These requirements can be achieved with metal forming processes but under high pressure and sufficient relative sliding distance between tool and workpiece surface. It makes such a process proven to galling. This tendency increases with diminishing of component dimensions. It means that retarding undesirable surface phenomena with special regard to galling becomes a critical factor for microforming. Literature search and previous investigations shows that implementation of vibrations might be a solution for limitation of galling tendency in microforming. Design/methodology/approach: The group of so called "reference micro-components" has been chosen as an representation of micro-products. For these parts with FEM basic processes parameters were found. The tooling system for vibration microforming of referenced parts has been designed. Vibrations are performed with vibrators based on stacked ceramic multilayer technology assuring accurate frequency and amplitude control. Findings: The method based on static and dynamic analytical and FEM calculations of proper design of vibration assisted flexible tooling with piezo-vibrators has been found. Research limitations/implications: Proposed reference micro-components and designed system can be used for investigations of technological parameters for utilisations of microforming. Practical implications: Flexible laboratory system is designed to manufacture a wide range of microcomponents using tools vibrations for improving quality of products. After laboratory investigations it is attended to design industrial system working on same principles. Originality/value: Designed within this project flexible tooling for low frequency vibration assisted microforming seems to be original according to literature investigations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.