Cel: Celem pracy jest przedstawienie wiedzy na temat badań oraz klasyfikacji odporności ogniowej przeszklonych ścian osłonowych, a ponadto wyznaczenie punktów krytycznych elementów próbnych ścian osłonowych pod względem izolacyjności ogniowej. Wprowadzenie: Ściana osłonowa składa się zazwyczaj z pionowych i poziomych elementów konstrukcyjnych, połączonych razem, zakotwionych do konstrukcji nośnej budynku i wypełnionych tak, by tworzyć lekkie, ciągłe pokrycie zamykające przestrzeń, które spełnia, samodzielnie lub w połączeniu z konstrukcją budynku, wszystkie normalne funkcje ściany zewnętrznej budynku, ale nie pełni funkcji nośnej. W niniejszym artykule przedstawione zostały główne aspekty dotyczące odporności ogniowej przeszklonych ścian osłonowych. Omówiono metodykę badań oraz sposób klasyfikacji odporności ogniowej elementów tego typu. Ponadto podjęto próbę zdefiniowania słabych punktów elementów próbnych przeszklonych ścian osłonowych na podstawie badań przeprowadzonych w ostatnich latach w Zakładzie Badań Ogniowych Instytutu Techniki Budowlanej (ZBOITB). Przeanalizowano przyrosty temperatur na nienagrzewanej powierzchni 17 elementów próbnych przeszklonych ścian osłonowych badanych w warunkach oddziaływania ognia od wewnątrz zgodnie z normami PN-EN 1364-3:2007 oraz PN-EN 1364-3:2014. Wszystkie z analizowanych elementów próbnych osiągnęły klasę odporności ogniowej min. EI 15. Metodologia: W pracy przedstawiono wyniki analizy przyrostów temperatury na nienagrzewanej powierzchni elementów próbnych przeszklonych ścian osłonowych dokonanej podczas badań odporności ogniowej. Badania przeprowadzono zgodnie z normami PN-EN 1364-3:2006 oraz PN-EN 1364-3:2014 w ZBOITB w Warszawie oraz w Pionkach. Wnioski: Największy przyrost temperatury najczęściej rejestrowano w miejscu połączenia słupów oraz rygli. Miejsce to można uznać za najbardziej krytyczne. Duży przyrost temperatury w tych miejscach spowodowany jest najprawdopodobniej dużymi ugięciami elementów próbnych przeszklonych ścian osłonowych w trakcie badania. Deformacja ta powoduje wypinanie się rygli ze słupów fasady, w wyniku czego tworzą się miejsca, przez które przedostają się gorące gazy. Ponadto w miejscach tych dosyć często występują specjalne łączniki, które ograniczają zaizolowaną przestrzeń profilu. Dodatkowo zaobserwowanym ciekawym zjawiskiem jest pojawienie się stosunkowo wysokich temperatur na przeszkleniu w odległości 20 mm od słupa lub rygla. Wymagania dotyczące pomiaru temperatury w tych miejscach zostały określone dopiero w nowelizacji normy badawczej z 2014 roku i należy przyznać, że było to właściwe posunięcie, ponieważ miejsca te, pod względem izolacyjności ogniowej, mogą być również słabymi punktami elementów próbnych przeszklonych ścian osłonowych.
EN
Aim: The presentation of technical know-how associated with fire tests and the classification of glazed curtain walls. The determination of critical places for maximum temperature rise on the unexposed surfaces of curtain wall test specimens. Introduction: A curtain wall is a type of wall which usually consists of vertical and horizontal structural members connected to each other and fixed to the floor-supporting structure of the building to form a lightweight space-enclosing continuous skin, which provides, by itself or in conjunction with the building construction, all the normal functions of an external wall, but doesn’t acquire any of the load-bearing properties of the building. The paper discusses the main issues related to the fire resistance of glazed curtain walls, including the testing methodology and the method of classification of this type of building element. Moreover, the paper presents an attempt to determine the weaknesses of aluminum glazed curtain wall test specimens regarding the maximum temperature-rise measurements, based on the fire-resistance tests performed in recent years by the Fire Research Department of the Building Research Institute (ITB). The paper analyses the results of the temperature rises on unexposed surfaces of 17 aluminum glazed curtain wall specimens tested for internal fire exposure in accordance with EN 1364-3:2006 and EN 1364-3:2014, which achieved the fire-resistance class of min. EI 15. Methodology: The paper presents the results of the analysis of temperature rises on the unexposed surfaces of curtain wall test specimens during fire-resistance tests. The tests were conducted in accordance with the PN-EN 1364-3:2006 and EN 1364-3:2014 standards in the Fire Testing Laboratory of the Building Research Institute (ITB) in Warsaw and Pionki. Conclusions: The highest temperature rise was recorded on the mullion and transom connections, and these places can be regarded as critical. The significant increase in temperature in those junctions can be explained by the large deformations of the glazed curtain wall specimens during the fire test. Such deformation causes the destruction of beam-to-column connections, which facilitates the flow of hot gases. Additionally, special connectors often occur in these places, which constricts the space of insulation inserts. An interesting phenomenon is the fairly high temperature rise on the glass panes, 20 mm from the mullions or transoms. Requirements regarding temperature measurements in these places were established no earlier than in the new version of the standard issued in 2014 and, as can be observed, this was the correct decision, because these places, in terms of fire resistance, can also be the weakness of glazed curtain wall specimens.
Purpose: The aim of the analysis was to investigate how smoke would spread in the building in the case of fire, and how to protect staircases without a pressure differential system (PDS). It was assumed that a ventilation system should: – prevent the staircase against complete smokiness. The part of the staircase located below the level covered by the fire should be smoke-free to the extent allowing the evacuation of people from the fire compartments; – remove smoke from the staircase as fast as possible to prevent a significant increase in the level of pressure in the staircase. Project and methods: Research was conducted in a full-scale 9-storey building. Three real fires were simulated. Typical apartment furnishings were used in the fires. A smoke ventilation system was installed in the staircase with variable make-up air supply. Tests were carried out for the following configurations of smoke ventilation systems: – natural smoke exhaust with natural/gravitational make-up air; – natural smoke exhaust with a mechanical (fixed volume of 14000 m3/h) make-up air inlet; – natural smoke exhaust with a variable mechanical make-up air inlet. The position of the door between the staircase and the apartment was used as an additional variable. The measurements included temperature, light transmittance in the staircase, pressure difference between the staircase and the external environment, and the flow of the air and smoke through the smoke damper. Results: The results of the research show that the system of gravitational smoke ventilation is susceptible to ambient conditions such as temperature. In some tests, it was observed that smoke could descend below the storey covered by the fire. The conducted research helped determine the best way to reduce the amount of smoke in the staircase. The use of mechanical air supply in the smoke ventilation system facilitated fast smoke removal from the staircase, and the proper air and smoke flow direction (from the test room to smoke exhaust devices). The use of mechanical make-up air supply in the smoke ventilation system prevented the smoke from descending below the storey covered by the fire, so that the staircase on the floor covered by the fire could remain free from smoke in the lower part, providing a way of escape from the level covered by the fire. Conclusions: The conducted tests have revealed that the best solution to protect staircases without PDSs is to use a smoke ventilation system comprising a smoke vent mounted at the top and mechanically adjusted make-up air supply on the ground level.
PL
Cel: Celem badań była analiza rozprzestrzenia się dymu pod kątem oceny skuteczności różnych systemów oddymiania klatki schodowej. Założono, że działanie takiej instalacji powinno: – zapobiegać zadymieniu części klatki schodowej, znajdującej się poniżej kondygnacji, na której zlokalizowany jest pożar, – po odcięciu napływu dymu na klatkę schodową, oczyszczać tę przestrzeń z dymu w krótkim czasie – realizacja oddymiania klatki schodowej nie może prowadzić do znacznego wzrostu nadciśnienia w klatce schodowej. Projekt i metody: Badania przeprowadzone zostały w 9-kondygnacyjnym budynku rzeczywistym. W ramach badań wykonano m.in. trzy prawdziwe pożary w pełnej skali. Każdy z pożarów inicjowany był w zaadaptowanym pomieszczeniu wyposażonym każdorazowo w identyczny zestaw mebli i elementów wyposażenia. Na klatce schodowej zainstalowano system oddymiania ze zmiennym dopływem powietrza uzupełniającego. Testy przeprowadzono dla następujących konfiguracji systemów oddymiania: – naturalny układ oddymiania z naturalnym / grawitacyjnym powietrzem uzupełniającym; – naturalny układ oddymiania z mechanicznym (stała wartość objętości 14000 m3/h) wlotem powietrza uzupełniającego; – naturalny układ oddymiania ze zmiennym mechanicznym wlotem powietrza uzupełniającego. Dodatkową zmienną było położenie drzwi między klatką schodową a mieszkaniem. Podczas testów rejestrowano: temperaturę (72 punkty pomiarowe), transmitancję światła (poziom zadymienia), różnicę ciśnień między klatką schodową a otoczeniem zewnętrznym oraz przepływ powietrza i dymu przez klapę dymu. Dodatkowo stale monitorowane były podstawowe parametry atmosferyczne (siła i kierunek wiatru, temperatura i wilgotność powietrza). Wyniki: Wyniki badań wykazały wysoką wrażliwość grawitacyjnego systemu oddymiania na warunki otoczenia (zaobserwowano, że w niekorzystnych warunkach dym może opaść poniżej kondygnacji objętej pożarem). Najskuteczniejszą i najbardziej odporną na zakłócenia metodą oddymiania był mechaniczny dopływ powietrza. Pozwolił on na szybkie usunięcie dymu ze schodów oraz prawidłowe, stałe i właściwe ukierunkowanie przepływu. System ten nie dopuszczał do opadania dymu poniżej kondygnacji objętej pożarem, zaś regulacja wydajności w zależności od przepływu na klapie zabezpieczała przestrzeń klatki schodowej przed wzrostem nadciśnienia. Wnioski: Najlepszą metodą oddymiania klatki schodowej jest zastosowanie klapy dymowej oraz mechanicznie regulowanego dopływu powietrza uzupełniającego na poziomie wyjścia z budynku.
W niniejszej publikacji przedstawiono prędkości rozprzestrzeniania się płomienia po badanych materiałach wg wymagań PN-ISO 3795 Pojazdy drogowe oraz ciągniki, maszyny rolnicze i leśne - Określanie palności materiałów stosowanych wewnątrz pojazdów dla tapicerek pobranych z 15 różnych modeli samochodów osobowych oraz ocenę możliwości wykorzystania alternatywnej procedury badawczej weryfikującej palność wyrobów stosowanych wewnątrz samochodów osobowych.
EN
This publication presents the flame propagation rates of tested materials according to PN-ISO 3795 requirements. Road vehicles and tractors, agricultural and forestry machinery - Determination of combustibility of materials used inside vehicles for upholstery taken from 15 different passenger car models and assessment of the possibility of using an alternative verification procedure flammability of products used in passenger cars.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.