Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  finite element head models
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The optimal execution of decompressive craniectomy in terms of the size and location of the skull opening is not straightforward. Our main goals are twofold: (1) constructing a design optimization method which can be applied to determine optimal skull opening for individual patient-specific cases and (2) performing a large-scale parametric optimization study to give some guidance in general about the optimal skull opening in case of oedematous brain tissue. Methods: A large number of virtual experiments performed by finite element simulations were applied to determine tendencies of tissue behaviour during surgery. The multiobjective optimization is performed by Goal Programming and Physical Programming methods. Results: Our results show that the postoperative pressure has an approximately linear dependence on the preoperative pressure and the skull opening area, while the damaged brain volume could have a more complex nonlinear dependence on the input data. Based on the averaged results of the parametric optimization study, the optimal skull opening has been determined in the function of the preoperative pressure and the relative importance of the pressure reduction. These results show that the optimal size of the unilateral skull opening is usually between 130–180 cm2 and these openings are more beneficial than the currently analysed bifrontal openings. Conclusions: The optimal skull opening is patient-specific and depends on several input data. The presented methodology can be applied to optimize surgery based on these input parameters for different injury types. Based on the results of large-scale parametric study generally applicable approximate results have been provided.
2
Content available remote Experimental and computational approach to human brain modelling – aHEAD
80%
EN
The human head is a highly complex structure, with a combination of hard and soft tissues and a variety of materials and interactions. Many researchers have used computational approaches to model the head, and several human finite element head models can be found in the literature. However, most of them are not geometrically accurate – for instance, the brain is simplified to a smooth spherical volume, which poses some concerns regarding boundary conditions and geometrical accuracy. Therefore, an advanced head model of a 28-year-old, designated as aHEAD 28 yo (aHEAD: advanced Head models for safety Enhancement And medical Development), has been developed. The model consists entirely of hexahedral elements for 3D structures of the head such as the cerebellum, skull and cerebrum, with detailed geometry of the gyri and sulci. Additionally, it is one of the first human head approaches published in the literature that includes cerebrospinal fluid simulated by Smoothed Particle Hydrodynamics (SPH) and a detailed model of pressurized bridging veins. To support the model’s credibility, this study is focused on physical material testing. A novel comprehensive experimental-computational approach is presented, which involves the brain tissue’s response to induced vibrations. The experiment successfully aimed to validate the material models used in the numerical analysis. Additionally, the authors present a kinematical model validation based on the Hardy experimental cadaver test. The developed model, along with its verification, aims to establish a further benchmark in finite element head modelling and can potentially provide new insights into injury mechanisms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.