The ease of accomplishing a tight knot in a rope depends mainly on the bending resistance of that rope, hence the bending behaviour of ropes becomes a matter of considerable importance. Reducing the bending resistance of ropes, while retaining their other physical and mechanical properties unchanged is a demand of rope consumers. Unfortunately there is no standardised method to measure the bending resistance of ropes. The bending resistance as a mechanical property depends on many factors, such as the type of material used, the processing methods, and the technical specification of the rope. In the present work, four factors were subjected to study, these being: filament denier twist in the primary strand, twist in the final strand, and percentage distribution of filament between core and sheath. A simple method, similar in principle to that used in the Shirley Fabric Stiffness Tester, was used to measure the bending length of polyethylene ropes. A simple model was derived to calculate the bending resistance of ropes. Multiple regression analysis was used to determine multiple correlation factors, degree of contribution of each factor to the measured properties, and its significant levels. Surface plots are used to demonstrate the shape of the effect of the factors that have significant effects.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.