Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fibroblast growth factor-21
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Hepatokines and non-alcoholic fatty liver disease
100%
EN
Nowadays non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver pathology both in adults and children. NAFLD manifestation ranges from a simple liver steatosis to steatohepatitis (nonalcoholic steatohepatitis - NASH), which may progress to advanced fibrosis, cirrhosis and end-stage liver disease. Due to the coexistence of visceral obesity, insulin resistance and dyslipidemia, NAFLD is considered to be the hepatic manifestation of metabolic syndrome. In recent years, in the pathogenesis of metabolic syndrome, type 2 diabetes mellitus, cardiovascular disease and also NAFLD, more and more attention has been paid to the so-called organokines, proteins with both paracrine or/and endocrine activities. These include most known adipokines (mainly produced by adipose tissue), myokines (mainly produced by skeletal muscles) and hepatokines exclusively or predominantly produced by the liver. It was shown that the liver may affect the lipids and glucose metabolism by hepatokines released into the blood and NAFLD seems to be associated with altered hepatokines production. Fetuin-A, fibroblast growth factor-21 (FGF-21), selenoprotein P, sex hormone-binding globulin (SHBG), angiopoietin-related growth factor (also known as angiopoietin-related protein 6) and leukocyte derived chemotaxin 2 (LECT2) are considered as the most important hepatokines. In this review, we provide an overview of the main hepatokines and we summarize the association of liver-derived proteins with the development and progression of NAFLD.
EN
Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.