Theoretical analysis of spin-polarized transport through a ferromagnetic single-electron transistor (FM SET) has been carried out in the sequential tunneling regime. Two external electrodes and the central part (island) of the device are assumed to be ferromagnetic, with the corresponding magnetizations being generally non-collinear. Transport properties of the FM SET are analyzed within the master equation approach, with the respective transition rates determined from the Fermi golden rule. It is assumed that spin relaxation processes on the island are sufficiently fast to neglect spin accumulation. It is shown that electric current and tunnel magnetoresistance (TMR) strongly depend on magnetic configuration of the device. Transport characteristics of symmetrical and asymmetrical structures have been calculated as a function of bias and the gate voltages.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.