Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  feedback control
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On one algorithm for solving the problem of source function reconstruction
100%
EN
In the paper, the problem of source function reconstruction in a differential equation of the parabolic type is investigated. Using the semigroup representation of trajectories of dynamical systems, we build a finite-step iterative procedure for solving this problem. The algorithm originates from the theory of closed-loop control (the method of extremal shift). At every step of the algorithm, the sum of a quality criterion and a linear penalty term is minimized. This procedure is robust to perturbations in problems data.
2
Content available remote Realizing actual feedback control of complex network
100%
Open Physics
|
2014
|
tom 12
|
nr 6
406-414
EN
In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.
3
100%
EN
We study the problem of identification of an input to a linear finite-dimensional system. We assume that the input has a feedback form, which is related to a problem often encountered in fault detection. The method we use is to embed the identification problem in a class of inverse problems of dynamics for controlled systems. Two algorithms for identification of a feedback matrix based on the method of feedback control with a model are constructed. These algorithms are stable with respect to noise-corrupted observations and computational errors.
4
Content available remote Multiple-valued logic feedback controllers of dynamical systems
100%
EN
The general problem of discrete feedback control of dynamical systems has been formulated. Multiple-valued logic networks as feedback controllers have been proposed. The possibility of application of ternary neural networks to parametric modification of multidimensional linear dynamical systems has been considered.
6
Content available remote Distributed output feedback control of two-time-scale hyperbolic PDE systems
100%
EN
This article focuses on systems of two-time-scale hyperbolic partial differential equations (PDEs), modeled in singularly perturbed form, for which the manipulated inputs, the controlled and the measured outputs are distributed in space. The objective is to synthesize distributed output feedback controllers that guarantee closed-loop stability and enforce output tracking, provided that the speed ratio of the fast versus the slow dynamical phenomena of the two-time-scale system is sufficiently large. Initially, singular perturbation methods are used to derive two separate PDE models which describe the fast and slow dynamics of the original system. These models are then used as a basis for the synthesis of well-conditioned distributed state feedback controllers that guarantee stability and enforce output tracking in the closed-loop system. Then, two distributed state observers are independently designed on the basis of the fast and slow subsystems, to provide estimates of the fast and slow states of the system. These state observers are coupled with the distributed state feedback controller to yield a distributed output feedback controller that enforces the desired objectives in the closed-loop system. The proposed methodology is applied to a convection-reaction process with time-scale multiplicity.
7
Content available remote On attaining the prescribed quality of a controlled fourth order system
100%
EN
In this paper, we discuss a method of auxiliary controlled models and its application to solving some robust control problems for a system described by differential equations. As an illustration, a system of nonlinear differential equations of the fourth order is used. A solution algorithm, which is stable with respect to informational noise and computational errors, is presented. The algorithm is based on a combination of online state/input reconstruction and feedback control methods.
EN
This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop motion realization stage are considered. The way point following task is determined by the user-defined sequence of waypoints which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any interpolation of way-points leading to simplified task description and its subsequent realization. The motion planning as well as the motion realization stage are based on the Vector-Field-Orientation (VFO) approach applied here to a new task. The unique features of the resultant VFO control system, namely, predictable vehicle transients, fast error convergence, vehicle directing effect together with very simple controller parametric synthesis, may prove to be useful in practically motivated motion tasks.
EN
We study the problem of identification of an input to a linear finite-dimensional system. We assume that the input has a feedback form, which is related to a problem often encountered in fault detection. The method we use is to embed the identification problem in a class of inverse problems of dynamics for controlled systems. Two algorithms for identification of a feedback matrix based on the method of feedback control with a model are constructed. These algorithms are stable with respect to noise-corrupted observations and computational errors.
EN
The feedback holdability problem for singular discrete-time linear systems is considered. Conditions are established for the existence of solutions to the following three problems for singular system (1) with regular pencil (E, A). Problem 1: find a gain matrix K such that the closed-loop trajectory is inside the nonnegative orthant R+n. Problem 2: find a gain matrix K such that the state vector xi of the closed-loop system xi = 0 for i greater than or equal k - 1, k = 1,...,n. Problem 3: find a gain matrix K such that ui = Kxi ∈ R+m and the trajectory of closed-loop system is inside R+n
EN
Model Predictive Control (MPC) represents a major paradigm shift in the field of automatic control. This radically affects synthesis techniques (illustrated by control of an unstable system) and underlying concepts (illustrated by control of a multivariable system), as well as lifting the Control engineer's focus from prescriptions to specifications ("what" not "how", illustrated by emulation of a conventional autopilot). Part of the objective of this paper is to emphasise the significance of this paradigm shift. Another part is to consider the fact that this shift was missed for many years by the academic community, and what this tells us about teaching and research in the field.
Open Mathematics
|
2003
|
tom 1
|
nr 2
141-156
EN
In this work we obtain sufficient conditions for stabilizability by time-delayed feedback controls for the system $$\frac{{\partial w\left( {x,t} \right)}}{{\partial t}} = A(D_x )w(x,t) - A(D_x )u(x,t), x \in \mathbb{R}^n , t > h, $$ where D x=(-i∂/∂x 1,...-i∂/∂x n), A(σ) and B(σ) are polynomial matrices (m×m), det B(σ)≡0 on ℝn, w is an unknown function, u(·,t)=P(D x)w(·,t−h) is a control, h>0. Here P is an infinite differentiable matrix (m×m), and the norm of each of its derivatives does not exceed Γ(1+|σ|2)γ for some Γ, γ∈ℝ depending on the order of this derivative. Necessary conditions for stabilizability of this system are also obtained. In particular, we study the stabilizability problem for the systems corresponding to the telegraph equation, the wave equation, the heat equation, the Schrödinger equation and another model equation. To obtain these results we use the Fourier transform method, the Lojasiewicz inequality and the Tarski-Seidenberg theorem and its corollaries. To choose an appropriate P and stabilize this system, we also prove some estimates of the real parts of the zeros of the quasipolynomial det {Iλ-A(σ)+B(σ)P(σ)e -hλ.
EN
The paper discusses a generic two-degree of freedom controller scheme for linear plants and then extends the results to block-oriented factorable nonlinear processes. This generalization is quite straightforward for both IS and IU Hammerstein models, however, it can be performed only for IS Wiener models. An iterative controller refinement scheme is also presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.