Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  feature similarity index measure
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Accurate image segmentation of cells and tissues is a challenging research area due to its vast applications in medical diagnosis. Seed detection is the basic and most essential step for the automated segmentation of microscopic images. This paper presents a robust, accurate and novel method for detecting cell nuclei which can be efficiently used for cell segmentation. We propose a template matching method using a feature similarity index measure (FSIM) for detecting nuclei positions in the image which can be further used as seeds for segmentation tasks. Initially, a Fuzzy C-Means clustering algorithm is applied on the image for separating the foreground region containing the individual and clustered nuclei regions. FSIM based template matching approach is then used for nuclei detection. FSIM makes use of low level texture features for comparisons and hence gives good results. The performance of the proposed method is evaluated on the gold standard dataset containing 36 images (_8000 nuclei) of tissue samples and also in vitro cultured cell images of Stromal Fibroblasts (5 images) and Human Macrophage cell line (4 images) using the statistical measures of Precision and Recall. The results are analyzed and compared with other state-of-the-art methods in the literature and software tools to prove its efficiency. Precision is found to be comparable and the Recall rate is found to exceed 92% for the gold standard dataset which shows considerable performance improvement over existing methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.