We construct explicit solutions of a system of two conservation laws with small viscosity in the quarter plane {(x, t): x > 0, t > 0}, with initial conditions at t = 0 and flux conditions at x = 0. We derive a formula for the limit as viscosity goes to zero which generally belongs to the space of locally bounded Borel measures. This limit satisfies the inviscid equation, in the sense of LeFloch [26]. We also treat more general initial and boundary datas and obtain solution in the algebra of generalized functions of Colombeau [9, 10].
This is an erratum to [J. Appl. Anal. 15 (2009), no. 2, 247–267], http://dx.doi.org/10.1515/JAA.2009.247. In this note the author would like to make a correction in formulas (2.12) and (2.13) for the limit limϵ→0(uϵ(x,t),vϵ(x,t)) stated in Theorem (2.1); there is no change in the proof.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.