Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  extension theorem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The typical indirect proof of an abstract extension theorem, by the Kuratowski-Zorn lemma, is based on a onestep extension argument. While Bell has observed this in case of the axiom of choice, for subfunctions of a given relation, we now consider such extension patterns on arbitrary directed-complete partial orders. By postulating the existence of so-called total elements rather than maximal ones, we can single out an immediate consequence of the Kuratowski-Zorn lemma from which quite a few abstract extension theorems can be deduced more directly, apart from certain definitions by cases. Applications include Baer’s criterion for a module to be injective. Last but not least, our general extension theorem is equivalent to a suitable form of the Kuratowski-Zorn lemma over constructive set theory.
EN
We are doing to prove an extension theorem on a functional equation for special means studied by Domsta and Matkowski
EN
An extension theorem for the functional equation of several variables ƒ (M(x,y))=N(ƒ(x), ƒ (y)), where the given functions M and N are left-side autodistributive, is presented.
EN
Some sufficient conditions which allow to extend every local solution of a simultaneous system of equations in a single variable of the form φ(x)=h(x, φ[ƒ1(x)],…, φ[ƒm(x)]) φ(x)=H(x,φ[F1(x),…, [Fn(x)]) to a global one are presented. Extensions of solutions of functional equations, both in single and in several variables, play important role (cf. for instance [1-3]).
|
|
nr 1
71-88
EN
Considering jets, or functions, belonging to some strongly non-quasianalytic Carleman class on compact subsets of $ℝ^n$, we extend them to the whole space with a loss of Carleman regularity. This loss is related to geometric conditions refining Łojasiewicz's "regular separation" or Whitney's "property (P)".
6
100%
EN
In this paper, we investigate a functional equation related to some recently introduced and investigated convexity type inequalities.
7
Content available Closed ideals in algebras of smooth functions
66%
EN
CONTENTS Introduction........................................................................................5 1. Main definitions and basic examples..............................................7 2. Closed ideals in Sobolev algebras...............................................10  2.0. Notation...................................................................................10  2.1. Preliminary observations and results.......................................11  2.2. Closed primary ideals..............................................................13  2.3. Spectral synthesis of ideals.....................................................15 3. Spectral synthesis of ideals in the algebras $C^m Lip φ$............18 4. D-algebras...................................................................................21 5. Zygmund algebras.......................................................................26  5.1. Basic properties.......................................................................26  5.2. Extensions, approximations, and traces...................................32  5.3. Closed primary ideals...............................................................40  5.4. Point derivations......................................................................43  5.5. An extension property and spectral synthesis..........................46  5.6. Proof of Theorem 5.1...............................................................48 Appendix..........................................................................................52  1. Traces of generalized Lipschitz spaces.......................................53  2. Traces of Zygmund spaces.........................................................58  3. Proof of Proposition 5.2.11..........................................................62 References.......................................................................................65
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.