Let (S, +) be a commutative semigroup, σ : S → S be an endomorphism with σ2 = id and let K be a field of characteristic different from 2. Inspired by the problem of strong alienation of the Jensen equation and the exponential Cauchy equation, we study the solutions f, g : S → K of the functional equation f(x+y)+f(x+σ(y))+g(x+y)=2f(x)+g(x)g(y) for x,y∈S. $$f(x + y) + f(x + \sigma (y)) + g(x + y) = 2f(x) + g(x)g(y)\;\;\;\;{\rm for}\;\;x,y \in S.$$ We also consider an analogous problem for the Jensen and the d’Alembert equations as well as for the d’Alembert and the exponential Cauchy equations.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW