Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  explainable artificial intelligence
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Hashtags constitute an indispensable part of modern social media world. As more and more hashtags are invented, it becomes a necessity to create clusters of these hashtags. Nowadays, however, the clustering alone does not help the users. They are asking for justification or expressed in the modern AI language, the clustering has to be explainable. We discuss a novel approach to hashtag explanation via a measure of similarity between hashtags based on the Graph Spectral Analysis. The application of this similarity measure may go far beyond the classical clustering task. It can be used to provide with explanations for the hashtags. In this paper we propose such a novel view of the proposed hashtag similarity measure.
EN
Despite the growing popularity of machine learning technology, vision‐based action recognition/forecasting systems are seen as black‐boxes by the user. The effecti‐ veness of such systems depends on the machine learning algorithms, it is difficult (or impossible) to explain the de‐ cisions making processes to the users. In this context, an approach that offers the user understanding of these re‐ asoning models is significant. To do this, we present an Explainable Artificial Intelligence (XAI) based approach to action forecasting using structured database and object affordances definition. The structured database is sup‐ porting the prediction process. The method allows to vi‐ sualize the components of the structured database. Later, the components of the base are used for forecasting the nominally possible motion goals. The object affordance explicated by the probability functions supports the se‐ lection of possible motion goals. The presented methodo‐ logy allows satisfactory explanations of the reasoning be‐ hind the inference mechanism. Experimental evaluation was conducted using the WUT‐18 dataset, the efficiency of the presented solution was compared to the other ba‐ seline algorithms.
3
Content available Credit Risk Modeling Using Interpreted XGBoost
63%
|
2023
|
tom 21
|
nr 3
46-70
PL
Cel: celem niniejszych badań jest opracowanie modelu oceny ryzyka kredytowego z wykorzystaniem klasyfikatora XGBoost z uwzględnieniem interpretowalności tego modelu. Metodologia: w niniejszych badaniach w celu modelowania ryzyka wykorzystano metodę Extreme Gradient Boosting (XGBoost). Jest to metoda stosowana do problemów regresji i klasyfikacji. Opiera się na sekwencji drzew decyzyjnych wykorzystujących gradientową metodę optymalizacji funkcji straty w celu minimalizacji błędów słabych estymatorów. Wykorzystano również metody umożliwiające dokonanie lokalnych i globalnych interpretacji: wykresy ceteris paribus, SHAP i badanie ważności cech. Wyniki: na podstawie wyników badań można stwierdzić, że XGBoost osiągnął wyższe wartości metryk efektywności niż regresja logistyczna, z wyjątkiem wartości metryki czułości, Oznacza to, że XGBoost wskazał mniejszy odsetek wszystkich złych klientów. Wyniki interpretacji lokalnej pozwalają stwierdzić, że w przypadku klienta na decyzję kredytową pozytywnie wpływają oceny punktowe od zewnętrznych dostawców, liczba lat samochodu oraz wykształcenie wyższe, natomiast negatywnie wpływają niska zewnętrzna ocena scoringowa oraz krótki staż pracy. Taka informacja pozwala na uargumentowanie negatywnej decyzji kredytowej. Wyniki interpretacji globalnej pozwalają wnioskować, że wyższym wartościom cech związanych ze wskaźnikami towarzyszą ujemne wartości Shapleya, co można interpretować jako negatywny efekt wpływu na zmienną objaśniającą. Ograniczenia/implikacje badawcze: metody XGBoost, A ceteris paribus plot, SHAP i feature importance mogą być wykorzystane do opracowania modelu oceny ryzyka kredytowego z uwzględnieniem interpretowalności uczenia maszynowego. Głównym ograniczeniem badań jest porównanie wyników XGBoost jedynie z wynikami regresji logistycznej. Przyszłe badania powinny skupić się na porównaniu wyników XGBoost z innymi metodami uczenia maszynowego, w tym z sieciami neuronowymi Oryginalność/wartość: jednym z kluczowych procesów realizowanych w bankach, jest proces podejmowania decyzji dotyczących udzielenia kredytów, czyli ocena ryzyka spłaty zobowiązania przez klienta. W sektorze finansów konsumenckich procesy te są zwykle w dużym stopniu zautomatyzowane, a coraz częściej wykorzystuje się w tym celu najnowsze metody uczenia maszynowego oparte na sieciach neuronowych i metodach uczenia zespołowego. Choć modele uczenia maszynowego pozwalają na osiągnięcie wyższej dokładności oceny ryzyka kredytowego w porównaniu z tradycyjnymi metodami statystycznymi, to głównym problemem jest niska interpretowalność modeli uczenia maszynowego. Modele te często występują jako „black box”. Interpretacja wyników modeli oceny ryzyka jest jednak bardzo ważna ze względu na konieczność wyjaśnienia klientowi powodów oceny jego ryzyka kredytowego.
EN
Purpose: The aim of the paper is to develop a credit risk assessment model usingb the XGBoost classifier supported by interpretation issues. Design/methodology/approach: The risk modeling is based on Extreme Gradient Boosting (XGBoost) in the research. It is a method used for regression and classification problems. It is based on a sequence of decision trees using a gradient-based optimization method of the loss function to minimize the errors of weak estimators. We use also methods for performing local and global interpretability: ceteris paribus charts, SHAP and feature importance approach. Findings: Based on the research results, it can be concluded that XGBoost achieved higher values of performance metrics than logistic regression, except sensitivity. It means that XGBoost indicated a smaller percentage of all bad client. Results of local interpretability enable a conclusion that in the case of the client in question, the credit decision is positively influenced by credit scores from external suppliers, while it is negatively influenced by minimal external scoring and short seniority. The number of years in the car and higher education are also positive. Such information helps to justify a negative credit decision. Results of global interpretability enable a conclusion that higher values of the traits associated with the z-scores are accompanied by negative Shapley values, which can be interpreted as a negative effect on the explanatory variable. Research limitations/implications: XGBoost, A ceteris paribus plot, SHAP, and feature importance methods can be used to develop a credit risk assessment model including machine learning interpretability. The main limitation of research is to compare the results of XGBoost only to the logistic regression results. Future research should focus on comparing the results of XGBoost to other machine learning methods, including neural networks. Originality/value: One of the key processes in a bank is the credit decision process, which is the evaluation of a client’s repayment risk. In the consumer finance sector, the processes are usually largely automated, and increasingly the latest machine learning methods based on neural networks and ensemble learning methods are being used for the purpose. Although machine learning models allow for achieving higher accuracy of credit risk assessment compared to traditional statistical methods, the main problem is the low interpretability of machine learning models. The models often perform as the “black box”. However, the interpretation of the results of risk assessment models is very important due to the need to explain to the client the reasons for assessing their credit risk.
EN
Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining more desired predictions. They can be generated by a variety of methods that optimize various, sometimes conflicting, quality measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and analysing conflicting solutions, in this paper we propose to use a multi-stage ensemble approach that will select a single counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one counterfactual from the Pareto front. The conducted experiments demonstrate that the proposed approach generates fully actionable counterfactuals with attractive compromise values of the quality measures considered.
EN
Fault management is an expensive process and analyzing data manually requires a lot of resources. Modern software bug tracking systems may be armed with automated bug report assignment functionality that facilitates bug classification or bug assignment to proper development group.For supporting decision systems, it would be beneficial to introduce information related to explainability. The purpose of this work is to evaluate the useof explainable artificial intelligence (XAI) in processes related to software development and bug classification based on bug reports created by either software testers or software users. The research was conducted on two different datasets. The first one is related to classification of security vs non-securitybug reports. It comes from a telecommunication company which develops software and hardware solutions for mobile operators. The second dataset contains a list of software bugs taken from an opensource project. In this dataset the task is to classify issues with one of following labels crash, memory, performance, and security. Studies on XAI-related algorithms show that there are no major differences in the results of the algorithms used when comparing them with others. Therefore, not only the users can obtain results with possible explanations or experts can verify model or its part before introducing into production, but also it does not provide degradation of accuracy. Studies showed that it could be put into practice, but it has not been done so far.
PL
Zarządzanie usterkami jest kosztownym procesem, a ręczna analiza danych wymaga znacznych zasobów. Nowoczesne systemy zarządzania usterkami w oprogramowaniu mogą być wyposażone w funkcję automatycznego przypisywania usterek, która ułatwia klasyfikację ustereklub przypisywanie usterek do właściwej grupy programistów. Dla wsparcia systemów decyzyjnych korzystne byłoby wprowadzenie informacji związanychz wytłumaczalnością. Celem tej pracy jest ocena możliwości wykorzystania wyjaśnialnej sztucznej inteligencji (XAI) w procesach związanych z tworzeniem oprogramowania i klasyfikacją usterek na podstawie raportów o usterkach tworzonych przez testerów oprogramowania lub użytkowników oprogramowania. Badania przeprowadzono na dwóch różnych zbiorach danych. Pierwszy z nich związany jest z klasyfikacją raportów o usterkach związanych z bezpieczeństwem i niezwiązanych z bezpieczeństwem. Dane te pochodzą od firmy telekomunikacyjnej, która opracowuje rozwiązania programowe i sprzętowe dla operatorów komórkowych. Drugi zestaw danych zawiera listę usterek oprogramowania pobranych z projektu opensource.W tym zestawie danych zadanie polega na sklasyfikowaniu problemów za pomocą jednej z następujących etykiet: awaria, pamięć, wydajnośći bezpieczeństwo. Badania przeprowadzone przy użyciu algorytmów związanych z XAI pokazują, że nie ma większych różnic w wynikach algorytmów stosowanych przy porównywaniu ich z innymi. Dzięki temu nie tylko użytkownicy mogą uzyskać wyniki z ewentualnymi wyjaśnieniami lub eksperci mogą zweryfikować model lub jego część przed wprowadzeniem do produkcji, ale także nie zapewnia to degradacji dokładności. Badania wykazały, że możnato zastosować w praktyce, ale do tej pory tego nie zrobiono.
EN
The techniques of explainability and interpretability are not alternatives for many realworld problems, as recent studies often suggest. Interpretable machine learning is nota subset of explainable artificial intelligence or vice versa. While the former aims to build glass-box predictive models, the latter seeks to understand a black box using an explanatory model, a surrogate model, an attribution approach, relevance importance, or other statistics. There is concern that definitions, approaches, and methods do not match, leading to the inconsistent classification of deep learning systems and models for interpretation and explanation. In this paper, we attempt to systematically evaluate and classify the various basic methods of interpretability and explainability used in the field of deep learning.One goal of this paper is to provide specific definitions for interpretability and explainability in Deep Learning. Another goal is to spell out the various research methods for interpretability and explainability through the lens of the literature to create a systematic classifier for interpretability and explainability in deep learning. We present a classifier that summarizes the basic techniques and methods of explainability and interpretability models. The evaluation of the classifier provides insights into the challenges of developinga complete and unified deep learning framework for interpretability and explainability concepts, approaches, and techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.