Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  existence theory
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On an optimal control problem for a quasilinear parabolic equation
100%
EN
An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.
EN
We study the Cauchy–Dirichlet problem for a class of nonlinear parabolic equations driven by nonstandard p(x, t), q(x, t)-growth condition. We prove theorems of existence and uniqueness of weak solutions in suitable Orlicz-Sobolev spaces, derive global and local in time L∞ bounds for the weak solutions.
EN
In this manuscript, we deal with a class and coupled system of implicit fractional differential equations, having some initial and impulsive conditions. Existence and uniqueness results are obtained by means of Banach’s contraction mapping principle and Krasnoselskii’s fixed point theorem. Hyers–Ulam stability is investigated by using classical technique of nonlinear functional analysis. Finally, we provide illustrative examples to support our obtained results.
EN
We consider an opitmal control problem for systems defined by nonlinear hyperbolic partial differential equations with state constraints. Since no convexity assumptions are made on the data, we also consider the control problem in relaxed form. We discretize both the classical and the relaxed problenms by using a finite element method in space and a finite difference scheme in time, the controls being approximated by piecevise constant ones. We develop the existence theory and the necessary conditions for optimality, for the continous and the discrete problems. Finally, we study the behaviour in the limit of discrete optimality, admissibility and extremality properties.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.