In this paper equivalent conditions for exact observability of diagonal systems with a one-dimensional output operator are given. One of these equivalent conditions is the conjecture of Russell and Weiss (1994). The other conditions are given in terms of the eigenvalues and the Fourier coefficients of the system data.
This is the second part of paper [8], where a model of a heavy chain system with a punctual load (tip mass) in the form of a system of partial differential equations was interpreted as an abstract semigroup system and then analysed on a Hilbert state space. In particular, in [8] we have formulated the problem of exponential stabilizability of a heavy chain in a given position. It was also shown that the exponential stability can be achieved by applying a stabilizer of the colocated-type. The proof used the method of Lyapunov functionals. In the present paper, we give other two proofs of the exponential stability, which provides an additional intrinsic insight into the exponential stabilizability mechanism. The first proof makes use of some spectral properties of the system. In the second proof, we employ some relationships between exponential stability and exact observability.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper equivalent conditions for exact observability of diagonal systems with a one-dimensional output operator are given. One of these equivalent conditions is the conjecture of Russell and Weiss (1994). The other conditions are given in terms of the eigenvalues and the Fourier coefficients of the system data.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.