Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  evolutionary neuro-fuzzy inference systems
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
This study investigates the potential of two evolutionary neuro-fuzzy inference systems, adaptive neuro-fuzzy inference system (ANFIS) with particle swarm optimization (ANFIS–PSO) and genetic algorithm (ANFIS–GA), in modelling reference evapotranspiration (ET0). The hybrid models were tested using Nash–Sutclife efciency, root mean square errors and determination coefcient (R2 ) statistics and compared with classical ANFIS, artifcial neural networks (ANNs) and classifcation and regression tree (CART). Various combinations of monthly weather data of solar radiation, relative humidity, average air temperature and wind speed gotten from two stations, Antalya and Isparta, Turkey, were used as input parameters to the developed models to estimate ET0. The recommended evolutionary neuro-fuzzy models produced better estimates compared to ANFIS, ANN and CART in modelling monthly ET0. The ANFIS–PSO and/or ANFIS–GA improved the accuracy of ANFIS, ANN and CART by 40%, 32% and 66% for the Antalya and by 14%, 44% and 67% for the Isparta, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.