Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  evaluation of clustering schemes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The successful application of a multi-clusteringbased neighborhood approach to recommender systems has led to increased recommendation accuracy and the elimination of divergence related to differences in clustering methods traditionally used. The Multi-Clustering Collaborative Filtering algorithm was developed to achieve this, as described in the author’s previous papers. However, utilizing multiple clusters poses challenges regarding memory consumption and scalability. Not all partitionings are equally advantageous, making selecting clusters for the recommender system’s input crucial without compromising recommendation accuracy. This article presents a solution for selecting clustering schemes based on internal indices evaluation. This method can be employed for preparing input data in collaborative filtering recommender systems. The study’s results confirm the positive impact of scheme selection on the overall recommendation performance, as it typically improves after the selection process. Furthermore, a smaller number of clustering schemes used as input for the recommender system enhances scalability and reduces memory consumption. The findings are compared with baseline recommenders’ outcomes to validate the effectiveness of the proposed approach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.